Fused filament fabrication (FFF) is an additive manufacturing process where a thermoplastic polymeric material, provided in the form of a filament, is extruded to create layers. Achieving a consistent flow of the extruded material is key to ensure quality of the final part. Extrudate flow depends on many factors; among these, the rate at which the filament is fed into the extruder. In a conventional FFF machine, filament transport is achieved through the use of a drive gear. However, slippage between the gear and the filament may occur, leading to reduced transport and the consequent local decrease of extrudate flow rate, which in turn leads to a series of imperfections in the fabricated part due to underextrusion, including reduced density. In this work, we propose a closed-loop control system to ensure the correct filament transport to the extruder. The system works through the comparison between the nominal transport of the filament and the actual filament transport measured using an encoder. The measured value is used to correct the filament feed rate in real time, ensuring a material flow close to the nominal one, regardless of the other process parameters. In this work, an instrumented FFF machine prototype was used to investigate the performance of the approach. For validation, parts were realized using different process parameters, while enabling and disabling the closed-loop control system. Results showed that the relative filament transport error decreased from up to 9% to below 0.25% and a density increase up to ∼10% regardless of the process parameters, as well as the reduction of interlayer and intralayer voids, as highlighted through cross-sectional imaging of realized samples. A reduction of defects on realized parts was observed, especially at higher fabrication feed rates.

Closed-Loop Filament Feed Control in Fused Filament Fabrication

michele moretti
Writing – Original Draft Preparation
;
arianna rossi
Writing – Review & Editing
2021

Abstract

Fused filament fabrication (FFF) is an additive manufacturing process where a thermoplastic polymeric material, provided in the form of a filament, is extruded to create layers. Achieving a consistent flow of the extruded material is key to ensure quality of the final part. Extrudate flow depends on many factors; among these, the rate at which the filament is fed into the extruder. In a conventional FFF machine, filament transport is achieved through the use of a drive gear. However, slippage between the gear and the filament may occur, leading to reduced transport and the consequent local decrease of extrudate flow rate, which in turn leads to a series of imperfections in the fabricated part due to underextrusion, including reduced density. In this work, we propose a closed-loop control system to ensure the correct filament transport to the extruder. The system works through the comparison between the nominal transport of the filament and the actual filament transport measured using an encoder. The measured value is used to correct the filament feed rate in real time, ensuring a material flow close to the nominal one, regardless of the other process parameters. In this work, an instrumented FFF machine prototype was used to investigate the performance of the approach. For validation, parts were realized using different process parameters, while enabling and disabling the closed-loop control system. Results showed that the relative filament transport error decreased from up to 9% to below 0.25% and a density increase up to ∼10% regardless of the process parameters, as well as the reduction of interlayer and intralayer voids, as highlighted through cross-sectional imaging of realized samples. A reduction of defects on realized parts was observed, especially at higher fabrication feed rates.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1499716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact