Despite the recent advances in the field of thermofluorochromism, the fabrication of thermoresponsive multicolor-emissive materials in a simple, low-cost and versatile manner still remains a challenge. Herein we accomplish this goal by expanding the concept of matrix-induced thermofluorochromism, where a sudden two-state variation of dyes' emission is promoted by the solid-liquid transition of a surrounding phase change material (e.g., paraffins). We demonstrate that this behavior can be transferred to the nanoscale by the synthesis of dye-loaded solid lipid nanoparticles, different types of which can then be combined into a single platform to obtain multicolor thermofluorochromism using a single type of emitter. Because of the reduced dimensions of these particles, they can be utilized to prepare transparent nanocomposites and inkjet-printed patterns showing complex thermoresponsive luminescence signals and applications ranging from smart displays to thermal sensing and high-security anti-counterfeiting.

Thermoresponsive multicolor-emissive materials based on solid lipid nanoparticles

Latterini L.;
2021

Abstract

Despite the recent advances in the field of thermofluorochromism, the fabrication of thermoresponsive multicolor-emissive materials in a simple, low-cost and versatile manner still remains a challenge. Herein we accomplish this goal by expanding the concept of matrix-induced thermofluorochromism, where a sudden two-state variation of dyes' emission is promoted by the solid-liquid transition of a surrounding phase change material (e.g., paraffins). We demonstrate that this behavior can be transferred to the nanoscale by the synthesis of dye-loaded solid lipid nanoparticles, different types of which can then be combined into a single platform to obtain multicolor thermofluorochromism using a single type of emitter. Because of the reduced dimensions of these particles, they can be utilized to prepare transparent nanocomposites and inkjet-printed patterns showing complex thermoresponsive luminescence signals and applications ranging from smart displays to thermal sensing and high-security anti-counterfeiting.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1500731
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact