In this letter, a hybrid model for single-crystal Shape Memory Alloy (SMA) wire actuators is presented. The result is based on a mathematical reformulation of the Müller-Achenbach-Seelecke (MAS) model, which provides an accurate and interconnection-oriented description of the SMA hysteretic response. The strong nonlinearity and high numerical stiffness of the MAS model, however hinder its practical use for simulation and control of complex SMA-driven systems. The main idea behind the hybrid reformulation is based on dividing the mechanical hysteresis of the SMA into five operating modes, each one representing a different physical state of the material. By properly deriving the switching conditions among those modes in a physically-consistent way, the MAS model is effectively reformulated within a hybrid dynamical setting. The main advantage of the hybrid reformulation is the possibility of describing the material dynamics with a simplified set of state equations while maintaining all benefits of the physics-based description offered by the MAS model. After describing the novel approach, simulation studies are conducted on a flexible robotic module actuated by protagonist-antagonist SMA wires. Through comparative numerical analysis, it is shown how the hybrid model provides the same accuracy as the MAS model while saving up to 80% of the simulation time. Moreover, the new modeling framework opens up the possibility of addressing SMA control from a hybrid systems perspective.
A hybrid dynamical modeling framework for shape memory alloy wire actuated structures
Ferrante F.;
2021
Abstract
In this letter, a hybrid model for single-crystal Shape Memory Alloy (SMA) wire actuators is presented. The result is based on a mathematical reformulation of the Müller-Achenbach-Seelecke (MAS) model, which provides an accurate and interconnection-oriented description of the SMA hysteretic response. The strong nonlinearity and high numerical stiffness of the MAS model, however hinder its practical use for simulation and control of complex SMA-driven systems. The main idea behind the hybrid reformulation is based on dividing the mechanical hysteresis of the SMA into five operating modes, each one representing a different physical state of the material. By properly deriving the switching conditions among those modes in a physically-consistent way, the MAS model is effectively reformulated within a hybrid dynamical setting. The main advantage of the hybrid reformulation is the possibility of describing the material dynamics with a simplified set of state equations while maintaining all benefits of the physics-based description offered by the MAS model. After describing the novel approach, simulation studies are conducted on a flexible robotic module actuated by protagonist-antagonist SMA wires. Through comparative numerical analysis, it is shown how the hybrid model provides the same accuracy as the MAS model while saving up to 80% of the simulation time. Moreover, the new modeling framework opens up the possibility of addressing SMA control from a hybrid systems perspective.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.