Recent discoveries have demonstrated that the surfaces of Mars, Ceres and other celestial bodies, as well as asteroids and comets, are characterized by the presence of ammonium-bearing minerals. A careful study of remote data compared with the analyses of more accurate laboratory data might allow a better remote characterization of planetary bodies. In this paper, the reflectance spectra of some ammoniated hydrous and anhydrous salts, namely sal-ammoniac NH4Cl, larderellite (NH4)B5O7(OH)2·H2O, mascagnite (NH4)SO4, struvite (NH4)MgPO4·6H2O and tschermigite (NH4)Al(SO4)2·12H2O, were collected at 293 and at 193 K. The aim is to detect how the NH4 vibrational features are affected by the chemical and structural environment. All samples were recovered after cooling cycles and were characterized by X-ray powder diffraction. Reflectance spectra of the studied minerals show absorption features around 1.3, 1.6, 2.06, 2.14, 3.23, 5.8 and 7.27 μm, related to the ammonium group. Between them, the 2ν3 at ~1.56 μm and the ν3 + ν4 at ~2.13 μm are the most affected modes by crystal structure type, with their position being strictly related to both anionic group and the strength of the hydrogen bonds. The reflectance spectra of water-rich samples [struvite (NH4)MgPO4·6(H2O) and tschermigite (NH4)Al(SO4)2·12(H2O)] show only H2O fundamental absorption features in the area from 2 to 2.8 μm and a band from hygroscopic water at 3 μm. Thermal analyses (TA), thermal gravimetry (TG) and differential scanning calorimetry (DSC) allowed to evaluate the dehydration temperatures and the occurring phase transitions and decompositions in the analyzed samples. In almost all samples, endothermic peaks at distinct temperatures were registered associated to loss of water molecules, differently linked to the structures. Moreover, an endothermic peak at 465 K in sal-ammoniac was associated to the phase transition from CsCl to NaCl structure type.

Reflectance spectroscopy of ammonium salts: Implications for planetary surface composition

Maximiliano Fastelli
Conceptualization
;
Paola Comodi
Conceptualization
;
Azzurra Zucchini
Methodology
2020

Abstract

Recent discoveries have demonstrated that the surfaces of Mars, Ceres and other celestial bodies, as well as asteroids and comets, are characterized by the presence of ammonium-bearing minerals. A careful study of remote data compared with the analyses of more accurate laboratory data might allow a better remote characterization of planetary bodies. In this paper, the reflectance spectra of some ammoniated hydrous and anhydrous salts, namely sal-ammoniac NH4Cl, larderellite (NH4)B5O7(OH)2·H2O, mascagnite (NH4)SO4, struvite (NH4)MgPO4·6H2O and tschermigite (NH4)Al(SO4)2·12H2O, were collected at 293 and at 193 K. The aim is to detect how the NH4 vibrational features are affected by the chemical and structural environment. All samples were recovered after cooling cycles and were characterized by X-ray powder diffraction. Reflectance spectra of the studied minerals show absorption features around 1.3, 1.6, 2.06, 2.14, 3.23, 5.8 and 7.27 μm, related to the ammonium group. Between them, the 2ν3 at ~1.56 μm and the ν3 + ν4 at ~2.13 μm are the most affected modes by crystal structure type, with their position being strictly related to both anionic group and the strength of the hydrogen bonds. The reflectance spectra of water-rich samples [struvite (NH4)MgPO4·6(H2O) and tschermigite (NH4)Al(SO4)2·12(H2O)] show only H2O fundamental absorption features in the area from 2 to 2.8 μm and a band from hygroscopic water at 3 μm. Thermal analyses (TA), thermal gravimetry (TG) and differential scanning calorimetry (DSC) allowed to evaluate the dehydration temperatures and the occurring phase transitions and decompositions in the analyzed samples. In almost all samples, endothermic peaks at distinct temperatures were registered associated to loss of water molecules, differently linked to the structures. Moreover, an endothermic peak at 465 K in sal-ammoniac was associated to the phase transition from CsCl to NaCl structure type.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1500937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact