Group B Streptococcus (GBS) has developed several strategies to evade immune defenses. We show that GBS induces macrophage (M) membrane permeability defects and apoptosis, prevented by inhibition of calcium influx but not caspases.We analyze the molecular mechanisms of GBS-induced murine M apoptosis. GBS causes a massive intracellular calcium increase, strictly correlated to membrane permeability defects and apoptosis onset. Calcium increase was associated with activation of calcium-dependent protease calpain, demonstrated by casein zymography, -spectrin cleavage to a calpainspecific fragment, fluorogenic calpain-substrate cleavage, and inhibition of these proteolyses by calpain inhibitors targeting the calcium-binding, 3-(4-Iodophenyl)-2-mercapto-(Z)-2-propenoic acid, or active site (four different inhibitors), by calpain small-interfering-RNA (siRNA) and EGTA. GBS-induced M apoptosis was inhibited by all micro- and m-calpain inhibitors used and m-calpain siRNA, but not 3-(5-Fluoro-3-indolyl)-2-mercapto-(Z)-2-propenoic acid (micro-calpain inhibitor) and micro-calpain siRNA indicating that m-calpain plays a central role in apoptosis. Calpain activation is followed by Bax and Bid cleavage, cytochrome c, apoptosis-inducing factor, and endonuclease G release from mitochondria. In GBS-induced apoptosis, cytochrome c did not induce caspase-3 and -7 activation because they and APAF-1 were degraded by calpains. Therefore, apoptosis-inducing factor and endonuclease G seem the main mediators of the calpain-dependent but caspaseindependent pathway of GBS-induced apoptosis. Proapoptotic mediator degradations do not occur with nonhemolytic GBS, not inducing M apoptosis. Apoptosis was reduced by Bax siRNA and Bid siRNA suggesting Bax and Bid degradation is apoptosis correlated. This signaling pathway, different from that of most pathogens, could represent a GBS strategy to evade immune defenses

Group B Streptococcus induces macrophage apoptosis by calpain activation.

FETTUCCIARI, Katia;FETRICONI, ILARIA;MANNUCCI, Roberta;NICOLETTI, Ildo;BARTOLI, Andrea;COACCIOLI, Stefano;MARCONI, Pierfrancesco
2006

Abstract

Group B Streptococcus (GBS) has developed several strategies to evade immune defenses. We show that GBS induces macrophage (M) membrane permeability defects and apoptosis, prevented by inhibition of calcium influx but not caspases.We analyze the molecular mechanisms of GBS-induced murine M apoptosis. GBS causes a massive intracellular calcium increase, strictly correlated to membrane permeability defects and apoptosis onset. Calcium increase was associated with activation of calcium-dependent protease calpain, demonstrated by casein zymography, -spectrin cleavage to a calpainspecific fragment, fluorogenic calpain-substrate cleavage, and inhibition of these proteolyses by calpain inhibitors targeting the calcium-binding, 3-(4-Iodophenyl)-2-mercapto-(Z)-2-propenoic acid, or active site (four different inhibitors), by calpain small-interfering-RNA (siRNA) and EGTA. GBS-induced M apoptosis was inhibited by all micro- and m-calpain inhibitors used and m-calpain siRNA, but not 3-(5-Fluoro-3-indolyl)-2-mercapto-(Z)-2-propenoic acid (micro-calpain inhibitor) and micro-calpain siRNA indicating that m-calpain plays a central role in apoptosis. Calpain activation is followed by Bax and Bid cleavage, cytochrome c, apoptosis-inducing factor, and endonuclease G release from mitochondria. In GBS-induced apoptosis, cytochrome c did not induce caspase-3 and -7 activation because they and APAF-1 were degraded by calpains. Therefore, apoptosis-inducing factor and endonuclease G seem the main mediators of the calpain-dependent but caspaseindependent pathway of GBS-induced apoptosis. Proapoptotic mediator degradations do not occur with nonhemolytic GBS, not inducing M apoptosis. Apoptosis was reduced by Bax siRNA and Bid siRNA suggesting Bax and Bid degradation is apoptosis correlated. This signaling pathway, different from that of most pathogens, could represent a GBS strategy to evade immune defenses
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/150145
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 59
social impact