We define a new type of Golomb ruler, which we term a resolvable Golomb ruler. These are Golomb rulers that satisfy an additional “resolvability” condition that allows them to generate resolvable symmetric configurations. The resulting configurations give rise to progressive dinner parties. In this paper, we investigate existence results for resolvable Golomb rulers and their application to the construction of resolvable symmetric configurations and progressive dinner parties. In particular, we determine the existence or nonexistence of all possible resolvable symmetric configurations and progressive dinner parties having block size at most 13, with nine possible exceptions. For arbitrary block size k, we prove that these designs exist if the number of points is divisible by k and at least k3.
On resolvable Golomb rulers, symmetric configurations and progressive dinner parties
Buratti M.;
2021
Abstract
We define a new type of Golomb ruler, which we term a resolvable Golomb ruler. These are Golomb rulers that satisfy an additional “resolvability” condition that allows them to generate resolvable symmetric configurations. The resulting configurations give rise to progressive dinner parties. In this paper, we investigate existence results for resolvable Golomb rulers and their application to the construction of resolvable symmetric configurations and progressive dinner parties. In particular, we determine the existence or nonexistence of all possible resolvable symmetric configurations and progressive dinner parties having block size at most 13, with nine possible exceptions. For arbitrary block size k, we prove that these designs exist if the number of points is divisible by k and at least k3.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.