Big data is usually processed in a decentralized computational environment with a number of distributed storage systems and processing facilities to enable both online and offline data analysis. In such a context, data access is fundamental to enhance processing efficiency as well as the user experience inspecting the data and the caching system is a solution widely adopted in many diverse domains. In this context, the optimization of cache management plays a central role to sustain the growing demand for data. In this article, we propose an autonomous approach based on a Reinforcement Learning technique to implement an agent to manage the file storing decisions. Moreover, we test the proposed method in a real context using the information on data analysis workflows of the CMS experiment at CERN.

Caching Suggestions Using Reinforcement Learning

Tracolli M.;Baioletti M.;Poggioni V.;
2020

Abstract

Big data is usually processed in a decentralized computational environment with a number of distributed storage systems and processing facilities to enable both online and offline data analysis. In such a context, data access is fundamental to enhance processing efficiency as well as the user experience inspecting the data and the caching system is a solution widely adopted in many diverse domains. In this context, the optimization of cache management plays a central role to sustain the growing demand for data. In this article, we propose an autonomous approach based on a Reinforcement Learning technique to implement an agent to manage the file storing decisions. Moreover, we test the proposed method in a real context using the information on data analysis workflows of the CMS experiment at CERN.
2020
978-3-030-64582-3
978-3-030-64583-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1501775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact