Amiodarone is a cationic amphiphilic drug used as an antiarrhythmic agent. It induces phospholipidosis, i.e., the accumulation of phospholipids within organelles of the endosomal–lysosomal system. Extracellular vesicles (EVs) are membrane-enclosed structures released by any type of cell and retrieved in every fluid of the body. EVs have been initially identified as a system to dispose cell waste, but they are also considered to be an additional manner to transmit intercellular signals. To understand the role of EVs in drug-induced phospholipidosis, we investigated EVs release in amiodarone-treated HEK-293 cells engineered to produce fluorescently labelled EVs. We observed that amiodarone induces the release of a higher number of EVs, mostly of a large/medium size. EVs released upon amiodarone treatment do not display significant morphological changes or altered size distribution, but they show a dose-dependent increase in autophagy associated markers, indicating a higher release of EVs with an autophagosome-like phenotype. Large/medium EVs also show a higher content of phospholipids. Drugs inducing lysosomal impairment such as chloroquine and bafilomycin A1 similarly prompt a higher release of EVs enriched in autophagy markers. This result suggests a mechanism associated with amiodarone-induced lysosomal impairment more than a connection with the accumulation of specific undigested substrates. Moreover, the implementation of the lysosomal function by overexpressing TFEB, a master gene regulator of lysosomal biogenesis, prevents the amiodarone-induced release of EVs, suggesting that this could be a feasible target to attenuate drug-induced abnormalities.

Drug-Induced Lysosomal Impairment Is Associated with the Release of Extracellular Vesicles Carrying Autophagy Markers

Sagini Krizia;Buratta Sandra;Delo Federica;Pellegrino Roberto Maria;Giovagnoli Stefano;Urbanelli Lorena
;
Emiliani Carla
2021

Abstract

Amiodarone is a cationic amphiphilic drug used as an antiarrhythmic agent. It induces phospholipidosis, i.e., the accumulation of phospholipids within organelles of the endosomal–lysosomal system. Extracellular vesicles (EVs) are membrane-enclosed structures released by any type of cell and retrieved in every fluid of the body. EVs have been initially identified as a system to dispose cell waste, but they are also considered to be an additional manner to transmit intercellular signals. To understand the role of EVs in drug-induced phospholipidosis, we investigated EVs release in amiodarone-treated HEK-293 cells engineered to produce fluorescently labelled EVs. We observed that amiodarone induces the release of a higher number of EVs, mostly of a large/medium size. EVs released upon amiodarone treatment do not display significant morphological changes or altered size distribution, but they show a dose-dependent increase in autophagy associated markers, indicating a higher release of EVs with an autophagosome-like phenotype. Large/medium EVs also show a higher content of phospholipids. Drugs inducing lysosomal impairment such as chloroquine and bafilomycin A1 similarly prompt a higher release of EVs enriched in autophagy markers. This result suggests a mechanism associated with amiodarone-induced lysosomal impairment more than a connection with the accumulation of specific undigested substrates. Moreover, the implementation of the lysosomal function by overexpressing TFEB, a master gene regulator of lysosomal biogenesis, prevents the amiodarone-induced release of EVs, suggesting that this could be a feasible target to attenuate drug-induced abnormalities.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1501794
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact