The importance of D-amino acids in mammals associated with enantio-dependent biological functions has been increasingly highlighted. In addition to naturally occurring, D-amino acid supplementation could have a positive biological impact, including cytoprotective implications. In this context, supplementation with D-cysteine has revealed beneficial effects. Quantification of cysteine enantiomers in rodent plasma has been achieved by using 4-fluoro-7-nitrobenzofurazan derivatization of the target analytes. Cystine, the main form of cysteine in the plasma, was initially reduced to cysteine using DL-dithiothreitol. Baseline enantioseparation was then achieved in less than 3 min using a (R,R)-Whelk-O 1 stationary phase and isocratic elution using CH3OH-H2O 90:10 (v/v) with 15 mM ammonium formate (apparent pH 6.0) at 0.5 mL/min. The derivatives were then detected using negative ESI-MS in SRM mode. An external calibration was employed for D-cysteine, while L-cysteine quantification, as an endogenous analyte, was addressed using a background subtraction strategy. The method was validated. Response functions were obtained from 0 to 300 µM and from 0 to 125 µM for D-cysteine and L-cysteine, respectively. The trueness ranged from 96% to 105% for both enantiomers with repeatability and intermediate precision lower than 8% and 15% for the D-form and the endogenous L-form, respectively. The method was successfully applied for determining D- and L-cysteine in mouse plasma after D-cysteine administration.

Separation and determination of cysteine enantiomers in plasma after derivatization with 4-fluoro-7-nitrobenzofurazan

Sardella R.;
2022

Abstract

The importance of D-amino acids in mammals associated with enantio-dependent biological functions has been increasingly highlighted. In addition to naturally occurring, D-amino acid supplementation could have a positive biological impact, including cytoprotective implications. In this context, supplementation with D-cysteine has revealed beneficial effects. Quantification of cysteine enantiomers in rodent plasma has been achieved by using 4-fluoro-7-nitrobenzofurazan derivatization of the target analytes. Cystine, the main form of cysteine in the plasma, was initially reduced to cysteine using DL-dithiothreitol. Baseline enantioseparation was then achieved in less than 3 min using a (R,R)-Whelk-O 1 stationary phase and isocratic elution using CH3OH-H2O 90:10 (v/v) with 15 mM ammonium formate (apparent pH 6.0) at 0.5 mL/min. The derivatives were then detected using negative ESI-MS in SRM mode. An external calibration was employed for D-cysteine, while L-cysteine quantification, as an endogenous analyte, was addressed using a background subtraction strategy. The method was validated. Response functions were obtained from 0 to 300 µM and from 0 to 125 µM for D-cysteine and L-cysteine, respectively. The trueness ranged from 96% to 105% for both enantiomers with repeatability and intermediate precision lower than 8% and 15% for the D-form and the endogenous L-form, respectively. The method was successfully applied for determining D- and L-cysteine in mouse plasma after D-cysteine administration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1502855
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact