The aim of this work is to develop high-performance adhesives to join carbon fiber reinforced composites (C/C) for use in aerospace applications; in order to guarantee sound mechanical strength, a low coefficient of thermal expansion, and ease of application on large components. Several different adhesive formulations, based on phenolic or cyanate-ester resins (charged with the maximum experimentally feasible amount of carbon-based fillers), are developed and tested. The measurements of the lap shear strength at room temperature of the C/C joined by means of one phenolic and one cyanate ester-based resin demonstrates that these formulations are the most suitable for the given application. A complete characterization, by means of viscosimetry, dilatometry, and thermal gravimetric analysis, coupled with gas analysis by means of mass spectroscopy, confirms that the phenolic-based formulation is the most promising joining material. A nano-indenter is used to obtain its Young modulus and hardness, both inside the joint and as a bulk cured adhesive.
Design, Realization, and Characterization of Advanced Adhesives for Joining Ultra-Stable C/C Based Components
Terenzi A.;Natali M.;Puglia D.;Torre L.;
2020
Abstract
The aim of this work is to develop high-performance adhesives to join carbon fiber reinforced composites (C/C) for use in aerospace applications; in order to guarantee sound mechanical strength, a low coefficient of thermal expansion, and ease of application on large components. Several different adhesive formulations, based on phenolic or cyanate-ester resins (charged with the maximum experimentally feasible amount of carbon-based fillers), are developed and tested. The measurements of the lap shear strength at room temperature of the C/C joined by means of one phenolic and one cyanate ester-based resin demonstrates that these formulations are the most suitable for the given application. A complete characterization, by means of viscosimetry, dilatometry, and thermal gravimetric analysis, coupled with gas analysis by means of mass spectroscopy, confirms that the phenolic-based formulation is the most promising joining material. A nano-indenter is used to obtain its Young modulus and hardness, both inside the joint and as a bulk cured adhesive.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.