The correct development of the composting process is essential to obtain a product of high value from organic wastes. Nowadays, some composting mixture parameters (i.e., air-filled porosity, moisture and the C/N ratio) are used to optimize the composting process, but their suitability is still debated because the literature reports contrasting results. This paper aimed to find other parameters that control the correct development of composting. The relationship between these and the compost quality was then verified. Twelve different composting mixtures were prepared using different organic wastes and bulking agents and were aerobically treated in a 300 L composter. The physico-chemical and chemical parameters of initial mixtures were analyzed, with particular regard to the total and water-extractable forms of organic C and N and their ratios and correlated with the temperature measured during composting. A positive correlation between temperature parameters during the active phase and soluble forms of N in the initial mixtures was found. A high total organic C to soluble N ratio in the composting mixtures was correlated with the low quality of the compost produced. Based on the results, a minimum content of WEN (water-extractable N) (0.4% w/w) or a TOC/WEN (total organic C/WEN) ratio in the range of 40–80 was recommended to ensure the correct development of the process and to produce compost of high quality.

The use of new parameters to optimize the composting process of different organic wastes

Pezzolla D.;Proietti P.;Calisti R.;Regni L.;Gigliotti G.
2021

Abstract

The correct development of the composting process is essential to obtain a product of high value from organic wastes. Nowadays, some composting mixture parameters (i.e., air-filled porosity, moisture and the C/N ratio) are used to optimize the composting process, but their suitability is still debated because the literature reports contrasting results. This paper aimed to find other parameters that control the correct development of composting. The relationship between these and the compost quality was then verified. Twelve different composting mixtures were prepared using different organic wastes and bulking agents and were aerobically treated in a 300 L composter. The physico-chemical and chemical parameters of initial mixtures were analyzed, with particular regard to the total and water-extractable forms of organic C and N and their ratios and correlated with the temperature measured during composting. A positive correlation between temperature parameters during the active phase and soluble forms of N in the initial mixtures was found. A high total organic C to soluble N ratio in the composting mixtures was correlated with the low quality of the compost produced. Based on the results, a minimum content of WEN (water-extractable N) (0.4% w/w) or a TOC/WEN (total organic C/WEN) ratio in the range of 40–80 was recommended to ensure the correct development of the process and to produce compost of high quality.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1505128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact