Herein, we introduce a fragment-based local coupled cluster embedding approach for the accurate quantification and analysis of noncovalent interactions in molecular aggregates. Our scheme combines two different expansions of the domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) energy: the many-body expansion (MBE) and the local energy decomposition (LED). The low-order terms in the MBE are initially computed in the presence of an environment that is treated at a low level of theory. Then, LED is used to decompose the energy of each term in the embedded MBE into additive fragment and fragment-pairwise contributions. This information is used to quantify the total energy of the system while providing at the same time in-depth insights into the nature and cooperativity of noncovalent interactions. Two different approaches are introduced and tested, in which the environment is treated at different levels of theory: the local coupled cluster in the Hartree-Fock (LCC-in-HF) method, in which the environment is treated at the HF level; and the electrostatically embedded local coupled cluster method (LCC-in-EE), in which the environment is replaced by point charges. Both schemes are designed to preserve as much as possible the accuracy of the parent local coupled cluster method for total energies, while being embarrassingly parallel and less memory intensive. These schemes appear to be particularly promising for the study of large and complex molecular aggregates at the coupled cluster level, such as condensed phase systems and protein-ligand interactions.

Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy

Bistoni G.
2021

Abstract

Herein, we introduce a fragment-based local coupled cluster embedding approach for the accurate quantification and analysis of noncovalent interactions in molecular aggregates. Our scheme combines two different expansions of the domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) energy: the many-body expansion (MBE) and the local energy decomposition (LED). The low-order terms in the MBE are initially computed in the presence of an environment that is treated at a low level of theory. Then, LED is used to decompose the energy of each term in the embedded MBE into additive fragment and fragment-pairwise contributions. This information is used to quantify the total energy of the system while providing at the same time in-depth insights into the nature and cooperativity of noncovalent interactions. Two different approaches are introduced and tested, in which the environment is treated at different levels of theory: the local coupled cluster in the Hartree-Fock (LCC-in-HF) method, in which the environment is treated at the HF level; and the electrostatically embedded local coupled cluster method (LCC-in-EE), in which the environment is replaced by point charges. Both schemes are designed to preserve as much as possible the accuracy of the parent local coupled cluster method for total energies, while being embarrassingly parallel and less memory intensive. These schemes appear to be particularly promising for the study of large and complex molecular aggregates at the coupled cluster level, such as condensed phase systems and protein-ligand interactions.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1507753
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 12
social impact