Herein, we study the mechanism of iron-catalyzed direct synthesis of unprotected aminoethers from olefins by a hydroxyl amine derived reagent using a wide range of analytical and spectroscopic techniques (Mössbauer, Electron Paramagnetic Resonance, Ultra-Violet Visible Spectroscopy, X-ray Absorption, Nuclear Resonance Vibrational Spectroscopy, and resonance Raman) along with high-level quantum chemical calculations. The hydroxyl amine derived triflic acid salt acts as the "oxidant"as well as "amino"group donor. It activates the high-spin Fe(II) (St = 2) catalyst [Fe(acac)2(H2O)2] (1) to generate a high-spin (St = 5/2) intermediate (Int I), which decays to a second intermediate (Int II) with St = 2. The analysis of spectroscopic and computational data leads to the formulation of Int I as [Fe(III)(acac)2-N-acyloxy] (an alkyl-peroxo-Fe(III) analogue). Furthermore, Int II is formed by N-O bond homolysis. However, it does not generate a high-valent Fe(IV)(NH) species (a Fe(IV)(O) analogue), but instead a high-spin Fe(III) center which is strongly antiferromagnetically coupled (J = -524 cm-1) to an iminyl radical, [Fe(III)(acac)2-NH·], giving St = 2. Though Fe(NH) complexes as isoelectronic surrogates to Fe(O) functionalities are known, detection of a high-spin Fe(III)-N-acyloxy intermediate (Int I), which undergoes N-O bond cleavage to generate the active iron-nitrogen intermediate (Int II), is unprecedented. Relative to Fe(IV)(O) centers, Int II features a weak elongated Fe-N bond which, together with the unpaired electron density along the Fe-N bond vector, helps to rationalize its propensity for N-transfer reactions onto styrenyl olefins, resulting in the overall formation of aminoethers. This study thus demonstrates the potential of utilizing the iron-coordinated nitrogen-centered radicals as powerful reactive intermediates in catalysis.

A Combined Spectroscopic and Computational Study on the Mechanism of Iron-Catalyzed Aminofunctionalization of Olefins Using Hydroxylamine Derived N-O Reagent as the "amino" Source and "oxidant"

Bistoni G.;
2022

Abstract

Herein, we study the mechanism of iron-catalyzed direct synthesis of unprotected aminoethers from olefins by a hydroxyl amine derived reagent using a wide range of analytical and spectroscopic techniques (Mössbauer, Electron Paramagnetic Resonance, Ultra-Violet Visible Spectroscopy, X-ray Absorption, Nuclear Resonance Vibrational Spectroscopy, and resonance Raman) along with high-level quantum chemical calculations. The hydroxyl amine derived triflic acid salt acts as the "oxidant"as well as "amino"group donor. It activates the high-spin Fe(II) (St = 2) catalyst [Fe(acac)2(H2O)2] (1) to generate a high-spin (St = 5/2) intermediate (Int I), which decays to a second intermediate (Int II) with St = 2. The analysis of spectroscopic and computational data leads to the formulation of Int I as [Fe(III)(acac)2-N-acyloxy] (an alkyl-peroxo-Fe(III) analogue). Furthermore, Int II is formed by N-O bond homolysis. However, it does not generate a high-valent Fe(IV)(NH) species (a Fe(IV)(O) analogue), but instead a high-spin Fe(III) center which is strongly antiferromagnetically coupled (J = -524 cm-1) to an iminyl radical, [Fe(III)(acac)2-NH·], giving St = 2. Though Fe(NH) complexes as isoelectronic surrogates to Fe(O) functionalities are known, detection of a high-spin Fe(III)-N-acyloxy intermediate (Int I), which undergoes N-O bond cleavage to generate the active iron-nitrogen intermediate (Int II), is unprecedented. Relative to Fe(IV)(O) centers, Int II features a weak elongated Fe-N bond which, together with the unpaired electron density along the Fe-N bond vector, helps to rationalize its propensity for N-transfer reactions onto styrenyl olefins, resulting in the overall formation of aminoethers. This study thus demonstrates the potential of utilizing the iron-coordinated nitrogen-centered radicals as powerful reactive intermediates in catalysis.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1507766
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact