This study investigated the effects of cultivar, fruit presence and tree age on whole-plant partitioning of dry matter and energy equivalents (i.e., glucose equivalents). Young trees of two cultivars characterized by different vigor (i.e., Arbequina, low vigor and Frantoio, high vigor) were either completely deflowered from 2014 to 2017 or never, providing two contrasting levels of cumulated reproductive growth over the following 4 years. Total vegetative dry matter growth over the 4 years was assessed by destructive samplings (whole tree). Plant growth was inversely correlated to reproductive efforts, with Arbequina producing more and growing less than Frantoio. Deflowered trees grew similarly across cultivars, although deflowered Arbequina grew statistically less than deflowered Frantoio by the fourth year, due to abundant flower production. Total reproductive (flowers + fruit) and vegetative biomass production were the same for all cultivars and treatments. Arbequina had a greater distribution of dry matter in directly productive structures (current and one-year-old shoots) and in leaves. This allows it to increase the number of current and following-year production sites, and to save in the resources invested in non-productive sinks (roots, trunk and branches), thus liberating resources for reproductive growth. Greater investments in leaves allow it to intercept more light and thus to increase assimilation. Increased assimilation and increased partitioning towards productive structures, and decreased competition by non-productive structures might contribute to explain the greater early bearing attitude of this cultivar.

Effects of cultivar, fruit presence and tree age on whole-plant dry matter partitioning in young olive trees

Famiani F.
2021

Abstract

This study investigated the effects of cultivar, fruit presence and tree age on whole-plant partitioning of dry matter and energy equivalents (i.e., glucose equivalents). Young trees of two cultivars characterized by different vigor (i.e., Arbequina, low vigor and Frantoio, high vigor) were either completely deflowered from 2014 to 2017 or never, providing two contrasting levels of cumulated reproductive growth over the following 4 years. Total vegetative dry matter growth over the 4 years was assessed by destructive samplings (whole tree). Plant growth was inversely correlated to reproductive efforts, with Arbequina producing more and growing less than Frantoio. Deflowered trees grew similarly across cultivars, although deflowered Arbequina grew statistically less than deflowered Frantoio by the fourth year, due to abundant flower production. Total reproductive (flowers + fruit) and vegetative biomass production were the same for all cultivars and treatments. Arbequina had a greater distribution of dry matter in directly productive structures (current and one-year-old shoots) and in leaves. This allows it to increase the number of current and following-year production sites, and to save in the resources invested in non-productive sinks (roots, trunk and branches), thus liberating resources for reproductive growth. Greater investments in leaves allow it to intercept more light and thus to increase assimilation. Increased assimilation and increased partitioning towards productive structures, and decreased competition by non-productive structures might contribute to explain the greater early bearing attitude of this cultivar.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1508457
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact