The electronic properties of aluminyl anions have been reported to be strictly related to those of carbenes, which are well-known to be easily tunable via selected structural modifications imposed on their backbone. Since peculiar reactivity of gold-aluminyl complexes towards carbon dioxide has been reported, leading to insertion of CO2 into the Au–Al bond, in this work the electronic structure and reactivity of Au–Al complexes with different aluminyl scaffolds have been systematically studied and compared to carbene analogues. The analyses reveal that, instead, aluminyls and carbenes display a very different behavior when bound to gold, with the aluminyls forming an electron-sharing and weakly polarized Au–Al bond, which turns out to be poorly modulated by structural modifications of the ligand. The reactivity of gold–aluminyl complexes towards CO2 shows, both qualitatively and quantitatively, similar reaction mechanisms, reflecting the scarce tunability of their electronic structure and bond nature. This work provides further insights and perspectives on the properties of the aluminyl anions and their behavior as coordination ligands.

Unraveling differences in aluminyl and carbene coordination chemistry: bonding in gold complexes and reactivity with carbon dioxide

Diego Sorbelli
;
Paola Belanzoni
2022

Abstract

The electronic properties of aluminyl anions have been reported to be strictly related to those of carbenes, which are well-known to be easily tunable via selected structural modifications imposed on their backbone. Since peculiar reactivity of gold-aluminyl complexes towards carbon dioxide has been reported, leading to insertion of CO2 into the Au–Al bond, in this work the electronic structure and reactivity of Au–Al complexes with different aluminyl scaffolds have been systematically studied and compared to carbene analogues. The analyses reveal that, instead, aluminyls and carbenes display a very different behavior when bound to gold, with the aluminyls forming an electron-sharing and weakly polarized Au–Al bond, which turns out to be poorly modulated by structural modifications of the ligand. The reactivity of gold–aluminyl complexes towards CO2 shows, both qualitatively and quantitatively, similar reaction mechanisms, reflecting the scarce tunability of their electronic structure and bond nature. This work provides further insights and perspectives on the properties of the aluminyl anions and their behavior as coordination ligands.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1513496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact