The present work aimed to study the activities of glyoxalase system enzymes, glyoxalase I (G I) and glyoxalase II (G II), as well as the expression of their genes in human breast carcinoma. Samples of tumoral tissue and normal counterparts were drawn from several patients during surgery. They served either for preparing extracts to be used in enzyme activity evaluations or for RNA extraction and subsequent northern blot analysis. A far higher activity level of G I and G II occurs in the tumor compared with pair-matched normal tissue, as shown by both spectrophotometrical assay and electrophoretic pattern. Such increased activities of G I and G II likely result from an enhanced enzyme synthesis as a consequence of increased expression of the respective genes in the tumoral tissue, as evidenced by northern blot. The present findings confirm a key-role of glyoxalase system to detoxify cytotoxic methylglyoxal and modulate S-D-lactoylglutathione levels in tumor cells. Moreover, they suggest a possible employment of GI inhibitors as anti-cancer drugs.
Expression of glyoxalase I and II in normal and breast cancer tissues
RULLI, Antonio;CARLI, Luciano;ROMANI, Rita;BARONI, Tiziano;GIOVANNINI, Elvio;ROSI, Gabriella;TALESA, Vincenzo Nicola
2001
Abstract
The present work aimed to study the activities of glyoxalase system enzymes, glyoxalase I (G I) and glyoxalase II (G II), as well as the expression of their genes in human breast carcinoma. Samples of tumoral tissue and normal counterparts were drawn from several patients during surgery. They served either for preparing extracts to be used in enzyme activity evaluations or for RNA extraction and subsequent northern blot analysis. A far higher activity level of G I and G II occurs in the tumor compared with pair-matched normal tissue, as shown by both spectrophotometrical assay and electrophoretic pattern. Such increased activities of G I and G II likely result from an enhanced enzyme synthesis as a consequence of increased expression of the respective genes in the tumoral tissue, as evidenced by northern blot. The present findings confirm a key-role of glyoxalase system to detoxify cytotoxic methylglyoxal and modulate S-D-lactoylglutathione levels in tumor cells. Moreover, they suggest a possible employment of GI inhibitors as anti-cancer drugs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.