Alginate (AG)-based microcapsules may provide a selective permeable and biocompatible physical barrier to prevent islet graft (TX)-directed immune destruction. However, extent of the achieved immunoprotection will continue to be variable and unpredictable until the role of the individual mechanisms involved with TX-related inflammatory cell and immune reactivity are clarified. Macrophages (M) are believed to play a pivotal role in controlling the host/TX interaction and its consequences. We then have studied the effects of isolated rat M and their secretory products on allogeneic islets enveloped in variably sized and configured microcapsules, within in vitro mixed islet-M cocultures. In particular, we aimed to determine the sequence of immune or not immune specific cascade of early events that derive from such on interaction. One of the specific aims was to assess whether the membrane's physical intactness and conversely its even minimal rupture, along with the microcapsules' size (i.e., large vs. small) would significantly impact M reactivity and, thereby, the encapsulated islet viability and function. Special care was taken to evaluate extent of the elicited reactivity by meticulously monitoring cytokine, N2 derivative, and other proinflammatory protein curve profiles during the early M activation process. The study has preliminarily shown that, for equally formulated microcapsules, the capsular size and membrane's morphologic thoroughness are key to prevent M reactivity and possibly avoid the intracapsular islet cell damage. While elucidation of pathways involved with the encapsulated islet TX-directed host's responsiveness actually is in progress, it has clearly emerged that microcapsules should comply with well-defined physical properties and formulation specifications in order to obviate the primum movens of the inflammatory reaction process.
OPTIMIZED PARAMETERS FOR MICROENCAPSULATION OF PANCREATIC ISLET CELLS: AN IN VITRO STUDY CLUEING ON ISLET GRAFT IMMUNOPROTECTION IN TYPE 1 DIABETES MELLITUS.
SARCHIELLI, Paola;LUCA, Giovanni;MANCUSO, FRANCESCA;CALAFIORE, Riccardo
2004
Abstract
Alginate (AG)-based microcapsules may provide a selective permeable and biocompatible physical barrier to prevent islet graft (TX)-directed immune destruction. However, extent of the achieved immunoprotection will continue to be variable and unpredictable until the role of the individual mechanisms involved with TX-related inflammatory cell and immune reactivity are clarified. Macrophages (M) are believed to play a pivotal role in controlling the host/TX interaction and its consequences. We then have studied the effects of isolated rat M and their secretory products on allogeneic islets enveloped in variably sized and configured microcapsules, within in vitro mixed islet-M cocultures. In particular, we aimed to determine the sequence of immune or not immune specific cascade of early events that derive from such on interaction. One of the specific aims was to assess whether the membrane's physical intactness and conversely its even minimal rupture, along with the microcapsules' size (i.e., large vs. small) would significantly impact M reactivity and, thereby, the encapsulated islet viability and function. Special care was taken to evaluate extent of the elicited reactivity by meticulously monitoring cytokine, N2 derivative, and other proinflammatory protein curve profiles during the early M activation process. The study has preliminarily shown that, for equally formulated microcapsules, the capsular size and membrane's morphologic thoroughness are key to prevent M reactivity and possibly avoid the intracapsular islet cell damage. While elucidation of pathways involved with the encapsulated islet TX-directed host's responsiveness actually is in progress, it has clearly emerged that microcapsules should comply with well-defined physical properties and formulation specifications in order to obviate the primum movens of the inflammatory reaction process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.