In this work, the problem of stabilization of general systems of linear transport equations with indomain and boundary couplings is investigated. It is proved that the unstable part of the spectrumis of finite cardinal. Then, using the pole placement theorem, a linear full state feedback controller is synthesized to stabilize the unstable finite-dimensional part of the system. Finally, by a careful study of semigroups, we prove the exponential stability of the closed-loop system. As a by product, the linear control constructed before is saturated and a fine estimate of the basin of attraction is given.

Spectral stabilization of linear transport equations with boundary and in-domain couplings

Ferrante F.;
2022

Abstract

In this work, the problem of stabilization of general systems of linear transport equations with indomain and boundary couplings is investigated. It is proved that the unstable part of the spectrumis of finite cardinal. Then, using the pole placement theorem, a linear full state feedback controller is synthesized to stabilize the unstable finite-dimensional part of the system. Finally, by a careful study of semigroups, we prove the exponential stability of the closed-loop system. As a by product, the linear control constructed before is saturated and a fine estimate of the basin of attraction is given.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1520362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact