Lipoptena cervi (Linnaeus), Lipoptena fortisetosa Maa, Hippobosca equina Linnaeus, and Pseudolynchia canariensis (Macquart) are hematophagous ectoparasites that infest different animal species and occasionally bite humans. Hosts are located by a complex process involving different kinds of stimuli perceived mainly by specific sensory structures on the antennae, which are the essential olfactory organs. General antennal morphology, together with distribution and ultrastructure of sensilla, have been studied in detail with scanning and transmission electron microscopy approaches. Observations have revealed some common features among the four studied hippoboscids: (a) typical concealment of the flagellum inside the other two segments; (b) characteristic trabecular surface of the flagellum; (c) peculiar external microtrichia; (d) presence on the flagellum of basiconic sensilla and grooved peg coeloconic sensilla; (e) unarticulated arista. The ultrastructure of L. fortisetosa revealed that microtrichia and the flagellar reticulated cuticle are not innervated. Different roles have been hypothesized for the described antennal structures. Microtrichia and the reticulated cuticle could convey volatile compounds towards the flagellar sensory area. Peculiar sensory neurons characterize the unarticulated arista which could be able to detect temperature variations. Coeloconic sensilla could be involved in thermoreception, hygroreception, and carbon dioxide reception at long distances, while the poorly porous basiconic sensilla could play a role in the host odour perception at medium–short distances.

Antennal Morphology and Fine Structure of Flagellar Sensilla in Hippoboscid Flies with Special Reference to Lipoptena fortisetosa (Diptera: Hippoboscidae)

Romani R.
2022

Abstract

Lipoptena cervi (Linnaeus), Lipoptena fortisetosa Maa, Hippobosca equina Linnaeus, and Pseudolynchia canariensis (Macquart) are hematophagous ectoparasites that infest different animal species and occasionally bite humans. Hosts are located by a complex process involving different kinds of stimuli perceived mainly by specific sensory structures on the antennae, which are the essential olfactory organs. General antennal morphology, together with distribution and ultrastructure of sensilla, have been studied in detail with scanning and transmission electron microscopy approaches. Observations have revealed some common features among the four studied hippoboscids: (a) typical concealment of the flagellum inside the other two segments; (b) characteristic trabecular surface of the flagellum; (c) peculiar external microtrichia; (d) presence on the flagellum of basiconic sensilla and grooved peg coeloconic sensilla; (e) unarticulated arista. The ultrastructure of L. fortisetosa revealed that microtrichia and the flagellar reticulated cuticle are not innervated. Different roles have been hypothesized for the described antennal structures. Microtrichia and the reticulated cuticle could convey volatile compounds towards the flagellar sensory area. Peculiar sensory neurons characterize the unarticulated arista which could be able to detect temperature variations. Coeloconic sensilla could be involved in thermoreception, hygroreception, and carbon dioxide reception at long distances, while the poorly porous basiconic sensilla could play a role in the host odour perception at medium–short distances.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1523970
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact