This study compared standard of care testing (SOC) to BioFire® FilmArray® Pneumonia plus Panel (PNplus). PNplus detects 15 bacteria with semiquantitative log bin vasslues, 7 antibiotic resistance markers, three atypical bacteria (AB), and eight viral classes directly from bronchoalveolar lavage-like specimens (BLS) and sputum-like specimens (SLS). Fifty-two laboratories from 13 European countries and Israel tested 1234 BLS and 1242 SLS with PNplus and SOC. Detection rates and number of pathogens/samples were compared for PNplus pathogens. PNplus bin values and SOC quantities were compared. Three thousand two hundred sixty-two bacteria in PNplus were detected by PNplus and/or SOC. SOC detected 57.1% compared to 95.8% for PNplus (p ≤ 0.0001). PNplus semiquantitative bin values were less than SOC, equal to SOC, or greater than SOC in 5.1%, 25.4%, and 69.6% of results, respectively. PNplus bin values were on average ≥ 1 log than SOC values (58.5% 1–2 logs; 11.0% 3–4 logs). PNplus identified 98.2% of MRSA and SOC 55.6%. SOC detected 73/103 AB (70.9%) and 134/631 viruses (21.2%). PNplus detected 93/103 AB (90.3%) and 618/631 viruses (97.9%) (p ≤ 0.0001). PNplus and SOC mean number of pathogens/samples were 1.99 and 1.44, respectively. All gram-negative resistance markers were detected. PNplus and SOC results were fully or partially concordant for 49.1% and 26.4% of specimens, respectively. PNplus was highly sensitive and detected more potential pneumonia pathogens than SOC. Semiquantification may assist in understanding pathogen significance. As PNplus generates results in approximately 1 h, PNplus has potential to direct antimicrobial therapy in near real time and improve antimicrobial stewardship and patient outcomes.
Multinational evaluation of the BioFire® FilmArray® Pneumonia plus Panel as compared to standard of care testing
Rossolini G. M.;Mencacci A.;
2021
Abstract
This study compared standard of care testing (SOC) to BioFire® FilmArray® Pneumonia plus Panel (PNplus). PNplus detects 15 bacteria with semiquantitative log bin vasslues, 7 antibiotic resistance markers, three atypical bacteria (AB), and eight viral classes directly from bronchoalveolar lavage-like specimens (BLS) and sputum-like specimens (SLS). Fifty-two laboratories from 13 European countries and Israel tested 1234 BLS and 1242 SLS with PNplus and SOC. Detection rates and number of pathogens/samples were compared for PNplus pathogens. PNplus bin values and SOC quantities were compared. Three thousand two hundred sixty-two bacteria in PNplus were detected by PNplus and/or SOC. SOC detected 57.1% compared to 95.8% for PNplus (p ≤ 0.0001). PNplus semiquantitative bin values were less than SOC, equal to SOC, or greater than SOC in 5.1%, 25.4%, and 69.6% of results, respectively. PNplus bin values were on average ≥ 1 log than SOC values (58.5% 1–2 logs; 11.0% 3–4 logs). PNplus identified 98.2% of MRSA and SOC 55.6%. SOC detected 73/103 AB (70.9%) and 134/631 viruses (21.2%). PNplus detected 93/103 AB (90.3%) and 618/631 viruses (97.9%) (p ≤ 0.0001). PNplus and SOC mean number of pathogens/samples were 1.99 and 1.44, respectively. All gram-negative resistance markers were detected. PNplus and SOC results were fully or partially concordant for 49.1% and 26.4% of specimens, respectively. PNplus was highly sensitive and detected more potential pneumonia pathogens than SOC. Semiquantification may assist in understanding pathogen significance. As PNplus generates results in approximately 1 h, PNplus has potential to direct antimicrobial therapy in near real time and improve antimicrobial stewardship and patient outcomes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.