Introduction: Exercise training improves walking capacity in patients with intermittent claudication (IC). Endothelial progenitor cells (EPCs), endothelial microparticles (EMPs), and endothelial dysfunction could play a role in this process. Methods: We measured EPCs and EMPs in a group of 60 patients with IC, and in a control group of 20 individuals without IC, before a treadmill test and 2, 24, and 48 hours after the test. Thirty patients with IC were randomly assigned to perform a 12-week home-based exercise training program. The EPC count, flow-mediated dilation (FMD) of the brachial artery, pain-free walking time (PFWT), and maximum walking time (MWT) were measured at the baseline and after the exercise training program. Results: In patients with IC, EMPs significantly increased 2 hours after the treadmill test, whereas EPCs significantly increased after 24 hours. Among the subjects assigned to complete the training program, we observed a significant increase in the number of EPCs after 12 weeks, as well as an improvement in FMD, PFWT, and MWT. A significant correlation between the variation of EPCs, FMD, and MWT was found. The increase of EPCs and FMD were independent determinants of the walking capacity improvement, without significant interaction. Conclusion: Our results suggest that EPCs mobilization contributes to the improvement of walking capacity in patients with IC undergoing structured physical training. A number of different, partly independent, mechanisms are involved in this process, and our results highlight the potential role of EMPs release and endothelial function improvement. ClinicalTrials.gov Identifier: NCT04302571

Effects of structured home-based exercise training on circulating endothelial progenitor cells and endothelial function in patients with intermittent claudication

Pasqualini L.;Bagaglia F.;Ministrini S.;Frangione M. R.;Leli C.;Siepi D.;Lombardini R.;Marini E.;Naeimi Kararoudi M.;Pirro M.
2021

Abstract

Introduction: Exercise training improves walking capacity in patients with intermittent claudication (IC). Endothelial progenitor cells (EPCs), endothelial microparticles (EMPs), and endothelial dysfunction could play a role in this process. Methods: We measured EPCs and EMPs in a group of 60 patients with IC, and in a control group of 20 individuals without IC, before a treadmill test and 2, 24, and 48 hours after the test. Thirty patients with IC were randomly assigned to perform a 12-week home-based exercise training program. The EPC count, flow-mediated dilation (FMD) of the brachial artery, pain-free walking time (PFWT), and maximum walking time (MWT) were measured at the baseline and after the exercise training program. Results: In patients with IC, EMPs significantly increased 2 hours after the treadmill test, whereas EPCs significantly increased after 24 hours. Among the subjects assigned to complete the training program, we observed a significant increase in the number of EPCs after 12 weeks, as well as an improvement in FMD, PFWT, and MWT. A significant correlation between the variation of EPCs, FMD, and MWT was found. The increase of EPCs and FMD were independent determinants of the walking capacity improvement, without significant interaction. Conclusion: Our results suggest that EPCs mobilization contributes to the improvement of walking capacity in patients with IC undergoing structured physical training. A number of different, partly independent, mechanisms are involved in this process, and our results highlight the potential role of EMPs release and endothelial function improvement. ClinicalTrials.gov Identifier: NCT04302571
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1526419
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact