We introduce an analytical approach to evaluate the error probability of orthogonal frequency-division-multiplexing (OFDM) systems subject to carrier frequency offset (CFO) in frequency-selective channels, characterized by Rayleigh or Rician fading. By properly exploiting the Gaussian approximation of the intercarrier interference (ICI), we show that the bit-error rate (BER) for an uncoded OFDM system with quadrature amplitude modulation (QAM) can be expressed by the sum of a few integrals, whose number depends on the constellation size. Each integral can be evaluated numerically, or, in Rayleigh fading, by using a series expansion that involves generalized hypergeometric functions. Simulation results illustrate that the theoretical analysis is quite accurate, especially for Rayleigh channels, and also with nonlinear amplifiers.
BER of OFDM Systems Impaired by Carrier Frequency Offset in Multipath Fading Channels
RUGINI, LUCA;BANELLI, Paolo
2005
Abstract
We introduce an analytical approach to evaluate the error probability of orthogonal frequency-division-multiplexing (OFDM) systems subject to carrier frequency offset (CFO) in frequency-selective channels, characterized by Rayleigh or Rician fading. By properly exploiting the Gaussian approximation of the intercarrier interference (ICI), we show that the bit-error rate (BER) for an uncoded OFDM system with quadrature amplitude modulation (QAM) can be expressed by the sum of a few integrals, whose number depends on the constellation size. Each integral can be evaluated numerically, or, in Rayleigh fading, by using a series expansion that involves generalized hypergeometric functions. Simulation results illustrate that the theoretical analysis is quite accurate, especially for Rayleigh channels, and also with nonlinear amplifiers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.