Residuation theory concerns the study of partially ordered algebraic structures, most often just monoids, equipped with a weak inverse for the monoidal operator. One of its areas of application is constraint programming, whose key requirement is the presence of a distributive operator for combining preferences. The key result of the paper shows how, given a residuated monoid of preferences, to build a new residuated monoid of (possibly infinite) tuples based on lexicographic order.

Distributivity and residuation for lexicographic orders

Santini F.
2022

Abstract

Residuation theory concerns the study of partially ordered algebraic structures, most often just monoids, equipped with a weak inverse for the monoidal operator. One of its areas of application is constraint programming, whose key requirement is the presence of a distributive operator for combining preferences. The key result of the paper shows how, given a residuated monoid of preferences, to build a new residuated monoid of (possibly infinite) tuples based on lexicographic order.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1530875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact