Residuation theory concerns the study of partially ordered algebraic structures, most often just monoids, equipped with a weak inverse for the monoidal operator. One of its areas of application is constraint programming, whose key requirement is the presence of a distributive operator for combining preferences. The key result of the paper shows how, given a residuated monoid of preferences, to build a new residuated monoid of (possibly infinite) tuples based on lexicographic order.
Distributivity and residuation for lexicographic orders
Santini F.
2022
Abstract
Residuation theory concerns the study of partially ordered algebraic structures, most often just monoids, equipped with a weak inverse for the monoidal operator. One of its areas of application is constraint programming, whose key requirement is the presence of a distributive operator for combining preferences. The key result of the paper shows how, given a residuated monoid of preferences, to build a new residuated monoid of (possibly infinite) tuples based on lexicographic order.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.