The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA.

Nonparametric small area estimation using penalized spline regression

RANALLI, Maria Giovanna;
2008

Abstract

The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/153209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 136
  • ???jsp.display-item.citation.isi??? ND
social impact