An h-queue layout of a graph G consists of a linear order of its vertices and a partition of its edges into h sets, called queues, such that no two independent edges of the same queue nest. The minimum h such that G admits an h-queue layout is the queue number of G. We present two fixed-parameter tractable algorithms that exploit structural properties of graphs to compute optimal queue layouts. As our first result, we show that deciding whether a graph G has queue number 1 and computing a corresponding layout is fixed-parameter tractable when parameterized by the treedepth of G. Our second result then uses a more restrictive parameter, the vertex cover number, to solve the problem for arbitrary h.

Parameterized Algorithms for Queue Layouts

Montecchiani F.;
2022

Abstract

An h-queue layout of a graph G consists of a linear order of its vertices and a partition of its edges into h sets, called queues, such that no two independent edges of the same queue nest. The minimum h such that G admits an h-queue layout is the queue number of G. We present two fixed-parameter tractable algorithms that exploit structural properties of graphs to compute optimal queue layouts. As our first result, we show that deciding whether a graph G has queue number 1 and computing a corresponding layout is fixed-parameter tractable when parameterized by the treedepth of G. Our second result then uses a more restrictive parameter, the vertex cover number, to solve the problem for arbitrary h.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1532676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact