The huge number of electronic devices called the Internet of Things requires miniaturized, autonomous and ecologically sustainable power sources. A viable way to power these devices is by converting mechanical energy into electrical through electro-active materials. The most promising and widely used electro-active materials for mechanical energy harvesting are piezoelectric materials, where the main one used are toxic or not biocompatible. In this work, we focus our attention on biocompatible and sustainable piezoelectric materials for energy harvesting. The aim of this work is to facilitate and expedite the effort of selecting the best piezoelectric material for a specific mechanical energy harvesting application by comprehensively reviewing and presenting the latest progress in the field. We also identify and discuss the characteristic property of each material for each class to which the material belong to, in terms of piezoelectric constants and achievable power.

Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting

Clementi, G;Cottone, F;Di Michele, A;Gammaitoni, L;Mattarelli, M;Perna, G;Neri, I
2022

Abstract

The huge number of electronic devices called the Internet of Things requires miniaturized, autonomous and ecologically sustainable power sources. A viable way to power these devices is by converting mechanical energy into electrical through electro-active materials. The most promising and widely used electro-active materials for mechanical energy harvesting are piezoelectric materials, where the main one used are toxic or not biocompatible. In this work, we focus our attention on biocompatible and sustainable piezoelectric materials for energy harvesting. The aim of this work is to facilitate and expedite the effort of selecting the best piezoelectric material for a specific mechanical energy harvesting application by comprehensively reviewing and presenting the latest progress in the field. We also identify and discuss the characteristic property of each material for each class to which the material belong to, in terms of piezoelectric constants and achievable power.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1532935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact