Let Λ(n) be the von Mangoldt function, and let rG(n):= ∑m1+m2=n Λ (m1)Λ(m2) be the weighted sum for the number of Goldbach representations which also includes powers of primes. Let S̃(z): = ∑n≥1 Λ (n)e-nz, where Λ (n) is the Von Mangoldt function, with z ∈ ℂ, Re (z) > 0. In this paper, we prove an explicit formula for S̃(z) and the Cesàro average of rG(n).
Some Identities Involving the Cesàro Average of the Goldbach Numbers
Cantarini M.
2019
Abstract
Let Λ(n) be the von Mangoldt function, and let rG(n):= ∑m1+m2=n Λ (m1)Λ(m2) be the weighted sum for the number of Goldbach representations which also includes powers of primes. Let S̃(z): = ∑n≥1 Λ (n)e-nz, where Λ (n) is the Von Mangoldt function, with z ∈ ℂ, Re (z) > 0. In this paper, we prove an explicit formula for S̃(z) and the Cesàro average of rG(n).File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.