ALIAmides are a family of fatty acid amides whose name comes from their mechanism of action, i.e., the Autacoid Local Injury Antagonism (ALIA). Actually, the ALIAmide parent molecule, palmitoylethanolamide (PEA), is locally produced on demand from a cell membrane precursor in order to control immune-inflammatory cell responses, avert chronic non-resolving inflammation, and limit the resulting clinical signs. ALIAmide sister compounds, such as Adelmidrol and palmitoylglucosamine, share mechanisms of action with PEA and may also increase endogenous levels of PEA. Provided that their respective bioavailability is properly addressed (e.g., through decreasing the particle size through micronization), exogenously administered ALIAmides thus mimic or sustain the prohomeostatic functions of endogenous PEA. The aim of the present paper is to review the main findings on the use of ALIAmides in small animals as a tribute to the man of vision who first believed in this “according-to-nature” approach, namely Francesco della Valle. After briefly presenting some key issues on the molecular targets, metabolism, and pharmacokinetics of PEA and related ALIAmides, here we will focus on the preclinical and clinical studies performed in dogs and cats. Although more data are still needed, ALIAmides may represent a novel and promising approach to small animal health.

Palmitoylethanolamide and Related ALIAmides for Small Animal Health: State of the Art

della Rocca G.
;
2022

Abstract

ALIAmides are a family of fatty acid amides whose name comes from their mechanism of action, i.e., the Autacoid Local Injury Antagonism (ALIA). Actually, the ALIAmide parent molecule, palmitoylethanolamide (PEA), is locally produced on demand from a cell membrane precursor in order to control immune-inflammatory cell responses, avert chronic non-resolving inflammation, and limit the resulting clinical signs. ALIAmide sister compounds, such as Adelmidrol and palmitoylglucosamine, share mechanisms of action with PEA and may also increase endogenous levels of PEA. Provided that their respective bioavailability is properly addressed (e.g., through decreasing the particle size through micronization), exogenously administered ALIAmides thus mimic or sustain the prohomeostatic functions of endogenous PEA. The aim of the present paper is to review the main findings on the use of ALIAmides in small animals as a tribute to the man of vision who first believed in this “according-to-nature” approach, namely Francesco della Valle. After briefly presenting some key issues on the molecular targets, metabolism, and pharmacokinetics of PEA and related ALIAmides, here we will focus on the preclinical and clinical studies performed in dogs and cats. Although more data are still needed, ALIAmides may represent a novel and promising approach to small animal health.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1534354
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact