The development of an efficient heterogeneous catalyst for storing H-2 into CO(2 )and releasing it from the produced formic acid, when needed, is a crucial target for overcoming some intrinsic criticalities of green hydrogen exploitation, such as high flammability, low density, and handling. Herein, we report an efficient heterogeneous catalyst for both reactions prepared by immobilizing a molecular iridium organometallic catalyst onto a high-surface mesoporous silica, through a sol-gel methodology. The presence of tailored single-metal catalytic sites, derived by a suitable choice of ligands with desired steric and electronic characteristics, in combination with optimized support features, makes the immobilized catalyst highly active. Furthermore, the information derived from multinuclear DNP-enhanced NMR spectroscopy, elemental analysis, and Ir L-3-edge XAS indicates the formation of cationic iridium sites. It is quite remarkable to note that the immobilized catalyst shows essentially the same catalytic activity as its molecular analogue in the hydrogenation of CO2. In the reverse reaction of HCOOH dehydrogenation, it is approximately twice less active but has no induction period.

Single-Site Iridium Picolinamide Catalyst Immobilized onto Silica for the Hydrogenation of CO2 and the Dehydrogenation of Formic Acid

Tensi, Leonardo
Investigation
;
Trotta, Caterina
Investigation
;
Domestici, Chiara
Investigation
;
Zuccaccia, Cristiano
Data Curation
;
Macchioni, Alceo
Writing – Review & Editing
2022

Abstract

The development of an efficient heterogeneous catalyst for storing H-2 into CO(2 )and releasing it from the produced formic acid, when needed, is a crucial target for overcoming some intrinsic criticalities of green hydrogen exploitation, such as high flammability, low density, and handling. Herein, we report an efficient heterogeneous catalyst for both reactions prepared by immobilizing a molecular iridium organometallic catalyst onto a high-surface mesoporous silica, through a sol-gel methodology. The presence of tailored single-metal catalytic sites, derived by a suitable choice of ligands with desired steric and electronic characteristics, in combination with optimized support features, makes the immobilized catalyst highly active. Furthermore, the information derived from multinuclear DNP-enhanced NMR spectroscopy, elemental analysis, and Ir L-3-edge XAS indicates the formation of cationic iridium sites. It is quite remarkable to note that the immobilized catalyst shows essentially the same catalytic activity as its molecular analogue in the hydrogenation of CO2. In the reverse reaction of HCOOH dehydrogenation, it is approximately twice less active but has no induction period.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1534713
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact