Phosphorus mononitride (PN) only has a fleeting existence on Earth, and molecular precursors for the release of this molecule under mild conditions in solution have remained elusive. Here we report the synthesis of an anthracene-based precursor-an anthracene moiety featuring an azidophosphine bridge across its central ring-that dissociates into dinitrogen, anthracene and P equivalent to N in solution with a first-order half-life of roughly 30 min at room temperature. Heated under reduced pressure, this azidophosphine-anthracene precursor decomposes in an explosive fashion at around 42 degrees C, as demonstrated in a molecular-beam mass spectrometry study. The precursor is also shown to serve as a PN transfer reagent in the synthesis of an Fe-NP coordination complex, through ligand exchange with its Fe-N-2 counterpart. The terminal N-bonded complex was found to be energetically preferred, compared to its P-bonded linkage isomer, owing to a significant covalent Fe-pnictogen bond character and an associated less unfavourable Pauli repulsion in the metal-ligand interaction.

Taming phosphorus mononitride

Bistoni, Giovanni;
2022

Abstract

Phosphorus mononitride (PN) only has a fleeting existence on Earth, and molecular precursors for the release of this molecule under mild conditions in solution have remained elusive. Here we report the synthesis of an anthracene-based precursor-an anthracene moiety featuring an azidophosphine bridge across its central ring-that dissociates into dinitrogen, anthracene and P equivalent to N in solution with a first-order half-life of roughly 30 min at room temperature. Heated under reduced pressure, this azidophosphine-anthracene precursor decomposes in an explosive fashion at around 42 degrees C, as demonstrated in a molecular-beam mass spectrometry study. The precursor is also shown to serve as a PN transfer reagent in the synthesis of an Fe-NP coordination complex, through ligand exchange with its Fe-N-2 counterpart. The terminal N-bonded complex was found to be energetically preferred, compared to its P-bonded linkage isomer, owing to a significant covalent Fe-pnictogen bond character and an associated less unfavourable Pauli repulsion in the metal-ligand interaction.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1534953
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact