The objective of this work was to investigate the potential ecosystem services of 16 fruit trees to plan and manage more efficiently "Urban Forest," increasing also the resilience of cities to climate change. We evaluated the potential capacity of PM10 absorption, the storage of CO2 from the atmosphere, and the cooling of the environment through shading by the crown and through evapotranspiration. We observed that some species, such as Morus nigra, Juglans regia, Pyrus communis, and Cydonia oblonga, are able to store a higher quantity of CO2 than others over a period of 50 years, respectively, of 2.40 tons, 2.33 tons, 1.51 tons, and 0.96 tons. Ficus carica, Juglans regia, and Morus nigra were relevant for PM10 absorption, since they were able to absorb, referring to the year 2019, 146.4 gr/tree, 195.6 gr/tree, and 143.1 gr/tree, respectively. Results showed that these ecosystem functions depend principally on the morphological characteristics of the individuals: their height, DBH, expansion of their crowns, and characteristics of the foliage system.

Ecosystem functions of fruit woody species in an urban environment

Orlandi, Fabio
Conceptualization
;
Marrapodi, Silvia
Investigation
;
Proietti, Chiara
Methodology
;
Ruga, Luigia
Formal Analysis
;
Fornaciari, Marco
Supervision
2022-01-01

Abstract

The objective of this work was to investigate the potential ecosystem services of 16 fruit trees to plan and manage more efficiently "Urban Forest," increasing also the resilience of cities to climate change. We evaluated the potential capacity of PM10 absorption, the storage of CO2 from the atmosphere, and the cooling of the environment through shading by the crown and through evapotranspiration. We observed that some species, such as Morus nigra, Juglans regia, Pyrus communis, and Cydonia oblonga, are able to store a higher quantity of CO2 than others over a period of 50 years, respectively, of 2.40 tons, 2.33 tons, 1.51 tons, and 0.96 tons. Ficus carica, Juglans regia, and Morus nigra were relevant for PM10 absorption, since they were able to absorb, referring to the year 2019, 146.4 gr/tree, 195.6 gr/tree, and 143.1 gr/tree, respectively. Results showed that these ecosystem functions depend principally on the morphological characteristics of the individuals: their height, DBH, expansion of their crowns, and characteristics of the foliage system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1535974
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact