Scattering-type scanning near-field optical microscopy (s- SNOM) has emerged over the past years as a powerful characterization tool that can probe important properties of advanced materials and biological samples in a label-free manner, with spatial resolutions lying in the nanoscale realm. In this work, we explore such usefulness in relationship with an interesting class of materials: polymer-coated gold nanoparticles (NPs). As thoroughly discussed in recent works, the interplay between the Au core and the polymeric shell has been found to be important in many applications devoted to biomedicine. We investigate bare Au NPs next to polystyrenesulfonate (PSS) and poly(diallyldimethylammonium chloride) (PDDA) coated ones under 532 nm laser excitation, an wavelength matching the surface plasmon band of the custom-synthesized nanoparticles. We observe consistent s-SNOM phase signals in the case of bare and shallow-coated Au NPs, whereas for thicker shell instances, these signals fade. For all investigated samples, the s-SNOM amplitude signals were found to be very weak, which may be related to reduced scattering efficiency due to absorption of the incident beam. We consider these observations important, as they may facilitate studies and applications in nanomedicine and nanotechnology where the precise positioning of polymer-coated Au NPs with nanoscale resolution is needed besides their dielectric function and related intrinsic optical properties, which are also quantitatively available with s-SNOM.
Scattering-type Scanning Near-Field Optical Microscopy of Polymer-Coated Gold Nanoparticles
Zampini, Giulia;Latterini, Loredana
2022
Abstract
Scattering-type scanning near-field optical microscopy (s- SNOM) has emerged over the past years as a powerful characterization tool that can probe important properties of advanced materials and biological samples in a label-free manner, with spatial resolutions lying in the nanoscale realm. In this work, we explore such usefulness in relationship with an interesting class of materials: polymer-coated gold nanoparticles (NPs). As thoroughly discussed in recent works, the interplay between the Au core and the polymeric shell has been found to be important in many applications devoted to biomedicine. We investigate bare Au NPs next to polystyrenesulfonate (PSS) and poly(diallyldimethylammonium chloride) (PDDA) coated ones under 532 nm laser excitation, an wavelength matching the surface plasmon band of the custom-synthesized nanoparticles. We observe consistent s-SNOM phase signals in the case of bare and shallow-coated Au NPs, whereas for thicker shell instances, these signals fade. For all investigated samples, the s-SNOM amplitude signals were found to be very weak, which may be related to reduced scattering efficiency due to absorption of the incident beam. We consider these observations important, as they may facilitate studies and applications in nanomedicine and nanotechnology where the precise positioning of polymer-coated Au NPs with nanoscale resolution is needed besides their dielectric function and related intrinsic optical properties, which are also quantitatively available with s-SNOM.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.