: Starting from the specific entropy (SE) indicator, which is well exploited by ecologists for investigating the status of health and the development tendency of ecosystems, a specific entropy per amount of exergy gained (SEEG) was proposed in this study for assessing the intrinsic sustainability of systems in the technosphere. According to the SE, the lower the SEEG indicator, the higher the intrinsic sustainability of the investigated system. This indicator was used for assessing the intrinsic sustainability of the main waste management (WM) systems of the different EU27 member states (MS). The main findings demonstrate average values of SEEG of about 0.0026 and 0.009 for composting and recycling, respectively. For incineration and landfilling, SEEG was 1.310 and 1.333, respectively. This indicates that incineration activity has a lower intrinsic sustainability. Concerning WM systems, lower values of SEEG were detected for EU 27 MS with recycling and composting percentages of waste >55%. Therefore, the maximization of percentages of waste recycled and composted, as well as solid recovered fuel production, are preferred over incineration.

Application of Entropy-Based Ecologic Indicators for Intrinsic Sustainability Assessment of EU27 Member States Waste Management Systems at Technosphere Level

Di Maria, Francesco
Conceptualization
;
2023-01-01

Abstract

: Starting from the specific entropy (SE) indicator, which is well exploited by ecologists for investigating the status of health and the development tendency of ecosystems, a specific entropy per amount of exergy gained (SEEG) was proposed in this study for assessing the intrinsic sustainability of systems in the technosphere. According to the SE, the lower the SEEG indicator, the higher the intrinsic sustainability of the investigated system. This indicator was used for assessing the intrinsic sustainability of the main waste management (WM) systems of the different EU27 member states (MS). The main findings demonstrate average values of SEEG of about 0.0026 and 0.009 for composting and recycling, respectively. For incineration and landfilling, SEEG was 1.310 and 1.333, respectively. This indicates that incineration activity has a lower intrinsic sustainability. Concerning WM systems, lower values of SEEG were detected for EU 27 MS with recycling and composting percentages of waste >55%. Therefore, the maximization of percentages of waste recycled and composted, as well as solid recovered fuel production, are preferred over incineration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1537956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact