: Epilepsy is the most common symptom in patients with brain tumors. The shared genetic, molecular, and cellular mechanisms between tumorigenesis and epileptogenesis represent 'two sides of the same coin'. These include augmented neuronal excitatory transmission, impaired inhibitory transmission, genetic mutations in the BRAF, IDH, and PIK3CA genes, inflammation, hemodynamic impairments, and astrocyte dysfunction, which are still largely unknown. Low-grade developmental brain tumors are those most commonly associated with epilepsy. Given this strict relationship, drugs able to target both seizures and tumors would be of extreme clinical usefulness. In this regard, anti-seizure medications (ASMs) are optimal candidates as they have well-characterized effects and safety profiles, do not increase the risk of developing cancer, and already offer well-defined seizure control. The most important ASMs showing preclinical and clinical efficacy are brivaracetam, lacosamide, perampanel, and especially valproic acid and levetiracetam. However, the data quality is low or limited to preclinical studies, and results are sometimes conflicting. Future trials with a prospective, randomized, and controlled design accounting for different prognostic factors will help clarify the role of these ASMs and the clinical setting in which they might be used. In conclusion, brain tumor-related epilepsies are clear examples of how close, multidisciplinary collaborations among investigators with different expertise are warranted for pursuing scientific knowledge and, more importantly, for the well-being of patients needing targeted and effective therapies.

Epilepsy and brain tumors: Two sides of the same coin

Costa, Cinzia
Writing – Original Draft Preparation
;
2023

Abstract

: Epilepsy is the most common symptom in patients with brain tumors. The shared genetic, molecular, and cellular mechanisms between tumorigenesis and epileptogenesis represent 'two sides of the same coin'. These include augmented neuronal excitatory transmission, impaired inhibitory transmission, genetic mutations in the BRAF, IDH, and PIK3CA genes, inflammation, hemodynamic impairments, and astrocyte dysfunction, which are still largely unknown. Low-grade developmental brain tumors are those most commonly associated with epilepsy. Given this strict relationship, drugs able to target both seizures and tumors would be of extreme clinical usefulness. In this regard, anti-seizure medications (ASMs) are optimal candidates as they have well-characterized effects and safety profiles, do not increase the risk of developing cancer, and already offer well-defined seizure control. The most important ASMs showing preclinical and clinical efficacy are brivaracetam, lacosamide, perampanel, and especially valproic acid and levetiracetam. However, the data quality is low or limited to preclinical studies, and results are sometimes conflicting. Future trials with a prospective, randomized, and controlled design accounting for different prognostic factors will help clarify the role of these ASMs and the clinical setting in which they might be used. In conclusion, brain tumor-related epilepsies are clear examples of how close, multidisciplinary collaborations among investigators with different expertise are warranted for pursuing scientific knowledge and, more importantly, for the well-being of patients needing targeted and effective therapies.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1543856
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact