We present an ab initio correlated approach to study molecules that interact strongly with quantum fields in an optical cavity. Quantum electrodynamics coupled cluster theory provides a nonperturbative description of cavity-induced effects in ground and excited states. Using this theory, we show how quantum fields can be used to manipulate charge transfer and photochemical properties of molecules. We propose a strategy to lift electronic degeneracies and induce modifications in the ground-state potential energy surface close to a conical intersection.
Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States
Ronca E.Writing – Original Draft Preparation
;
2020
Abstract
We present an ab initio correlated approach to study molecules that interact strongly with quantum fields in an optical cavity. Quantum electrodynamics coupled cluster theory provides a nonperturbative description of cavity-induced effects in ground and excited states. Using this theory, we show how quantum fields can be used to manipulate charge transfer and photochemical properties of molecules. We propose a strategy to lift electronic degeneracies and induce modifications in the ground-state potential energy surface close to a conical intersection.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.