A linear [n, k, d](q) code C is called NMDS if d(C) = n - k and d(C-perpendicular to) = k. In this paper the classification of the [n, 3, n - k](q) NMDS codes is given for q = 7, 8, 9. It has been found using the correspondence between [n, 3, n - k](q) NMDS codes and (n, 3)-arcs of PG(2,q).

Classifications of the [n,3,n-3] NMDS codes over GF(7), GF(8) and GF(9)

MARCUGINI, Stefano;MILANI, Alfredo;PAMBIANCO, Fernanda
2001

Abstract

A linear [n, k, d](q) code C is called NMDS if d(C) = n - k and d(C-perpendicular to) = k. In this paper the classification of the [n, 3, n - k](q) NMDS codes is given for q = 7, 8, 9. It has been found using the correspondence between [n, 3, n - k](q) NMDS codes and (n, 3)-arcs of PG(2,q).
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/154503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact