A linear [n, k, d](q) code C is called NMDS if d(C) = n - k and d(C-perpendicular to) = k. In this paper the classification of the [n, 3, n - k](q) NMDS codes is given for q = 7, 8, 9. It has been found using the correspondence between [n, 3, n - k](q) NMDS codes and (n, 3)-arcs of PG(2,q).
Classifications of the [n,3,n-3] NMDS codes over GF(7), GF(8) and GF(9)
MARCUGINI, Stefano;MILANI, Alfredo;PAMBIANCO, Fernanda
2001
Abstract
A linear [n, k, d](q) code C is called NMDS if d(C) = n - k and d(C-perpendicular to) = k. In this paper the classification of the [n, 3, n - k](q) NMDS codes is given for q = 7, 8, 9. It has been found using the correspondence between [n, 3, n - k](q) NMDS codes and (n, 3)-arcs of PG(2,q).File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.