Nanodiscs based on membrane scaffold proteins (MSPs) and phospholipids are used as membrane mimics to stabilize membrane proteins in solution for structural and functional studies. Combining small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and time-resolved small-angle neutron scattering (TR-SANS), we characterized the structure and lipid bilayer properties of five different nanodiscs made with dimyr-istoylphosphatidylcholine and different MSPs varying in size, charge, and circularization. Our SAXS modeling showed that the structural parameters of the embedded lipids are all similar, irrespective of the MSP properties. DSC showed that the lipid packing is not homogeneous in the nanodiscs and that a 20 angstrom wide boundary layer of lipids with perturbed packing is located close to the MSP, while the packing of central lipids is tighter than in large unilamellar vesicles. Finally, TR-SANS showed that lipid exchange rates in nanodiscs decrease with increasing nanodisc size and are lower for the nanodiscs made with supercharged MSPs compared to conventional nanodiscs. Altogether, the results provide a thorough biophysical understanding of the nanodisc as a model membrane system, which is important in order to carry out and interpret experiments on membrane proteins embedded in such systems.
Structural and Biophysical Properties of Supercharged and Circularized Nanodiscs
Luchini, Alessandra;
2021
Abstract
Nanodiscs based on membrane scaffold proteins (MSPs) and phospholipids are used as membrane mimics to stabilize membrane proteins in solution for structural and functional studies. Combining small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and time-resolved small-angle neutron scattering (TR-SANS), we characterized the structure and lipid bilayer properties of five different nanodiscs made with dimyr-istoylphosphatidylcholine and different MSPs varying in size, charge, and circularization. Our SAXS modeling showed that the structural parameters of the embedded lipids are all similar, irrespective of the MSP properties. DSC showed that the lipid packing is not homogeneous in the nanodiscs and that a 20 angstrom wide boundary layer of lipids with perturbed packing is located close to the MSP, while the packing of central lipids is tighter than in large unilamellar vesicles. Finally, TR-SANS showed that lipid exchange rates in nanodiscs decrease with increasing nanodisc size and are lower for the nanodiscs made with supercharged MSPs compared to conventional nanodiscs. Altogether, the results provide a thorough biophysical understanding of the nanodisc as a model membrane system, which is important in order to carry out and interpret experiments on membrane proteins embedded in such systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.