The available information on isotopic abundances in the atmospheres of low-mass Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stars requires that episodes of extensive mixing occur below the convective envelope, reaching down to layers close to the hydrogen burning shell (Cool Bottom Processing). Recently \cite{Busso:2007jw} suggested that dynamo-produced buoyant magnetic flux tubes could provide the necessary physical mechanisms and also supply sufficient transport rates. Here, we present an $\alpha-\Omega$ dynamo in the envelope of an RGB/AGB star in which shear and rotation drain via turbulent dissipation and Poynting flux. In this context, if the dynamo is to sustain throughout either phase, convection must resupply shear. Under this condition, volume-averaged, peak toroidal field strengths of $<B_\phi>\simeq3\times10^3$ G (RGB) and $<B_\phi>\simeq5\times10^3$ G (AGB) are possible at the base of the convection zone. If the magnetic fields are concentrated in flux tubes, the corresponding field strengths are comparable to those required by Cool Bottom Processing.

Magnetic Mixing in Red Giant and Asymptotic Giant Branch Stars

BUSSO, Maurizio Maria;PALMERINI, SARA
2008

Abstract

The available information on isotopic abundances in the atmospheres of low-mass Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stars requires that episodes of extensive mixing occur below the convective envelope, reaching down to layers close to the hydrogen burning shell (Cool Bottom Processing). Recently \cite{Busso:2007jw} suggested that dynamo-produced buoyant magnetic flux tubes could provide the necessary physical mechanisms and also supply sufficient transport rates. Here, we present an $\alpha-\Omega$ dynamo in the envelope of an RGB/AGB star in which shear and rotation drain via turbulent dissipation and Poynting flux. In this context, if the dynamo is to sustain throughout either phase, convection must resupply shear. Under this condition, volume-averaged, peak toroidal field strengths of $\simeq3\times10^3$ G (RGB) and $\simeq5\times10^3$ G (AGB) are possible at the base of the convection zone. If the magnetic fields are concentrated in flux tubes, the corresponding field strengths are comparable to those required by Cool Bottom Processing.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/154716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 78
social impact