The coordinatively unsaturated gold(iii) chelate complex [(C^N-CH)Au(C6F5)]+ (1+) reacts with main group hydrides H-BPin and H-SiEt3 in dichloromethane solution at -70 °C to form the corresponding σ-complexes, which were spectroscopically characterized (C^N-CH = 2-(C6H3But)-6-(C6H4But)pyridine anion; Pin = OCMe2CMe2O). In the presence of an external base such as diethyl ether, heterolytic cleavage of the silane H-Si bond leads to the gold hydrides [{(C^N-CH)AuC6F5}2(μ-H)]+ (2+) and (C^N-CH)AuH(C6F5) (5), together with spectroscopically detected [Et3Si-OEt2]+. The activation of dihydrogen also involves heterolytic H-H bond cleavage but requires a higher temperature (-20 °C). H2 activation proceeds in two mechanistically distinct steps: the first leading to 2 plus [H(OEt2)2]+, the second to protonation of one of the C^N pyridine ligands and reductive elimination of C6F5H. By comparison, formation of gold hydrides by cleavage of suitably activated C-H bonds is very much more facile; e.g. the reaction of 1·OEt2 with Hantzsch ester is essentially instantaneous and quantitative at -30 °C. This is the first experimental observation of species involved in the initial steps of gold catalyzed hydroboration, hydrosilylation and hydrogenation and the first demonstration of the ability of organic C-H bonds to act as hydride donors towards gold.

Heterolytic bond activation at gold: Evidence for gold(iii) H-B, H-Si complexes, H-H and H-C cleavage

Rocchigiani L.
;
2019

Abstract

The coordinatively unsaturated gold(iii) chelate complex [(C^N-CH)Au(C6F5)]+ (1+) reacts with main group hydrides H-BPin and H-SiEt3 in dichloromethane solution at -70 °C to form the corresponding σ-complexes, which were spectroscopically characterized (C^N-CH = 2-(C6H3But)-6-(C6H4But)pyridine anion; Pin = OCMe2CMe2O). In the presence of an external base such as diethyl ether, heterolytic cleavage of the silane H-Si bond leads to the gold hydrides [{(C^N-CH)AuC6F5}2(μ-H)]+ (2+) and (C^N-CH)AuH(C6F5) (5), together with spectroscopically detected [Et3Si-OEt2]+. The activation of dihydrogen also involves heterolytic H-H bond cleavage but requires a higher temperature (-20 °C). H2 activation proceeds in two mechanistically distinct steps: the first leading to 2 plus [H(OEt2)2]+, the second to protonation of one of the C^N pyridine ligands and reductive elimination of C6F5H. By comparison, formation of gold hydrides by cleavage of suitably activated C-H bonds is very much more facile; e.g. the reaction of 1·OEt2 with Hantzsch ester is essentially instantaneous and quantitative at -30 °C. This is the first experimental observation of species involved in the initial steps of gold catalyzed hydroboration, hydrosilylation and hydrogenation and the first demonstration of the ability of organic C-H bonds to act as hydride donors towards gold.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1547482
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact