Biodegradable metal alloys may be successfully used to support bone repair, avoiding second surgery commonly needed when inert metal alloys are used. Combining a biodegradable metal alloy with a suitable pain relief agent could improve patient quality of life. AZ31 alloy was coated using a poly(lactic-co-glycolic) acid (PLGA) polymer loaded with ketorolac tromethamine using the solvent casting method. The ketorolac release profile from the polymeric film and the coated AZ31 samples, the PLGA mass loss of polymeric film, and the cytotoxicity of the optimized coated alloy were assessed. The coated sample showed a ketorolac release that was prolonged for two weeks, which was slower than that of just the polymeric film, in simulated body fluid. PLGA mass loss was complete after a 45-day immersion in simulated body fluid. The PLGA coating was able to lower AZ31 and ketorolac tromethamine cytotoxicity observed in human osteoblasts. PLGA coating also prevents AZ31 cytotoxicity, which was identified in human fibroblasts. Therefore, PLGA was able to control ketorolac release and protect AZ31 from premature corrosion. These characteristics allow us to hypothesize that the use of ketorolac tromethamine-loaded PLGA coating on AZ31 in the management of bone fractures can favor osteosynthesis and relief pain.

Ketorolac Loaded Poly(lactic-co-glycolic acid) Coating of AZ31 in the Treatment of Bone Fracture Pain

Puccetti, Matteo;Antognelli, Cinzia;Ricci, Maurizio;Ambrogi, Valeria
;
Schoubben, Aurelie
2023

Abstract

Biodegradable metal alloys may be successfully used to support bone repair, avoiding second surgery commonly needed when inert metal alloys are used. Combining a biodegradable metal alloy with a suitable pain relief agent could improve patient quality of life. AZ31 alloy was coated using a poly(lactic-co-glycolic) acid (PLGA) polymer loaded with ketorolac tromethamine using the solvent casting method. The ketorolac release profile from the polymeric film and the coated AZ31 samples, the PLGA mass loss of polymeric film, and the cytotoxicity of the optimized coated alloy were assessed. The coated sample showed a ketorolac release that was prolonged for two weeks, which was slower than that of just the polymeric film, in simulated body fluid. PLGA mass loss was complete after a 45-day immersion in simulated body fluid. The PLGA coating was able to lower AZ31 and ketorolac tromethamine cytotoxicity observed in human osteoblasts. PLGA coating also prevents AZ31 cytotoxicity, which was identified in human fibroblasts. Therefore, PLGA was able to control ketorolac release and protect AZ31 from premature corrosion. These characteristics allow us to hypothesize that the use of ketorolac tromethamine-loaded PLGA coating on AZ31 in the management of bone fractures can favor osteosynthesis and relief pain.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1547774
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact