Although rare, basaltic Plinian eruptions represent a considerable volcanic hazard. The low viscosity of crystal-poor basaltic magma inhibits magma fragmentation; however, Las Sierras-Masaya volcano, Nicaragua, has produced multiple basaltic Plinian eruptions. Here, we quantify the geochemistry and volatile concentrations of melt inclusions in samples of the Fontana Lapilli and Masaya Triple Layer eruptions to constrain pre-eruptive conditions. Combining thermometry and geochemical modelling, we show that magma cooled to similar to 1000 degrees C prior to eruption, crystallising a mush that was erupted and preserved in scoriae. We use these data in a numerical conduit model, which finds that conditions most conducive to Plinian eruptions are a pre-eruptive temperature <1100 degrees C and a total crystal content >30 vol.%. Cooling, crystal-rich, large-volume basaltic magma bodies may be hazardous due to their potential to erupt with Plinian magnitude. Rapid ascent rates mean there may only be some minutes between eruption triggering and Plinian activity at Masaya.

Basaltic Plinian eruptions at Las Sierras-Masaya volcano driven by cool storage of crystal-rich magmas

Petrelli, M;
2022

Abstract

Although rare, basaltic Plinian eruptions represent a considerable volcanic hazard. The low viscosity of crystal-poor basaltic magma inhibits magma fragmentation; however, Las Sierras-Masaya volcano, Nicaragua, has produced multiple basaltic Plinian eruptions. Here, we quantify the geochemistry and volatile concentrations of melt inclusions in samples of the Fontana Lapilli and Masaya Triple Layer eruptions to constrain pre-eruptive conditions. Combining thermometry and geochemical modelling, we show that magma cooled to similar to 1000 degrees C prior to eruption, crystallising a mush that was erupted and preserved in scoriae. We use these data in a numerical conduit model, which finds that conditions most conducive to Plinian eruptions are a pre-eruptive temperature <1100 degrees C and a total crystal content >30 vol.%. Cooling, crystal-rich, large-volume basaltic magma bodies may be hazardous due to their potential to erupt with Plinian magnitude. Rapid ascent rates mean there may only be some minutes between eruption triggering and Plinian activity at Masaya.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1548610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 5
social impact