: Tuberous sclerosis complex (TSC) is a rare, multisystem genetic disorder that leads to the development of benign tumors in multiple organs and neurological symptoms. TSC clinical manifestations show a great heterogenicity, with most patients presenting severe neuropsychiatric and neurological disorders. TSC is caused by loss-of-function mutations in either Tsc1 or Tsc2 genes, leading to overexpression of the mechanistic target of rapamycin (mTOR) and, consequently, abnormal cellular growth, proliferation and differentiation as well as to cell migration defects. Beside the growing interest, TSC remains a disorder poorly understood, with limited perspectives in the field of therapeutic strategies. Here we used murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene as a TSC model to unravel novel molecular aspects of the pathophysiology of this disease. 2D-DIGE-based proteomic analysis detected 55 differently represented spots in Tsc1-deficient cells, compared to wild-type counterparts, which were associated with 36 protein entries after corresponding trypsinolysis and nanoLC-ESI-Q-Orbitrap-MS/MS analysis. Proteomic results were validated using various experimental approaches. Bioinformatics associated differently represented proteins with oxidative stress and redox pathways, methylglyoxal biosynthesis, myelin sheath, protein S-nitrosylation and carbohydrate metabolism. Because most of these cellular pathways have already been linked to TSC features, these results were useful to clarify some molecular aspects of TSC etiopathogenesis and suggested novel promising therapeutic protein targets. SIGNIFICANCE: Tuberous Sclerosis Complex (TSC) is a multisystemic disorder caused by inactivating mutations of TSC1 or TSC2 genes, which induce overactivation of the mTOR component. The molecular mechanisms underlying the pathogenesis of TSC remain unclear, probably due to complexity of mTOR signaling network. To have a picture of protein abundance changes occurring in TSC disorder, murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene were used as a model of disease. Thus, Tsc1-deficient SVZ NSPCs and wild-type cells were comparatively evaluated by proteomics. This analysis evidenced changes in the abundance of proteins involved in oxidative/nitrosative stress, cytoskeleton remodelling, neurotransmission, neurogenesis and carbohydrate metabolism. These proteins might clarify novel molecular aspects of TSC etiopathogenesis and constitute putative molecular targets for novel therapeutic management of TSC-related disorders.

Proteomic analysis of murine Tsc1-deficient neural stem progenitor cells

Chiaradia, Elisabetta;Tognoloni, Alessia;Polchi, Alice;Tancini, Brunella
;
Magini, Alessandro
2023

Abstract

: Tuberous sclerosis complex (TSC) is a rare, multisystem genetic disorder that leads to the development of benign tumors in multiple organs and neurological symptoms. TSC clinical manifestations show a great heterogenicity, with most patients presenting severe neuropsychiatric and neurological disorders. TSC is caused by loss-of-function mutations in either Tsc1 or Tsc2 genes, leading to overexpression of the mechanistic target of rapamycin (mTOR) and, consequently, abnormal cellular growth, proliferation and differentiation as well as to cell migration defects. Beside the growing interest, TSC remains a disorder poorly understood, with limited perspectives in the field of therapeutic strategies. Here we used murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene as a TSC model to unravel novel molecular aspects of the pathophysiology of this disease. 2D-DIGE-based proteomic analysis detected 55 differently represented spots in Tsc1-deficient cells, compared to wild-type counterparts, which were associated with 36 protein entries after corresponding trypsinolysis and nanoLC-ESI-Q-Orbitrap-MS/MS analysis. Proteomic results were validated using various experimental approaches. Bioinformatics associated differently represented proteins with oxidative stress and redox pathways, methylglyoxal biosynthesis, myelin sheath, protein S-nitrosylation and carbohydrate metabolism. Because most of these cellular pathways have already been linked to TSC features, these results were useful to clarify some molecular aspects of TSC etiopathogenesis and suggested novel promising therapeutic protein targets. SIGNIFICANCE: Tuberous Sclerosis Complex (TSC) is a multisystemic disorder caused by inactivating mutations of TSC1 or TSC2 genes, which induce overactivation of the mTOR component. The molecular mechanisms underlying the pathogenesis of TSC remain unclear, probably due to complexity of mTOR signaling network. To have a picture of protein abundance changes occurring in TSC disorder, murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene were used as a model of disease. Thus, Tsc1-deficient SVZ NSPCs and wild-type cells were comparatively evaluated by proteomics. This analysis evidenced changes in the abundance of proteins involved in oxidative/nitrosative stress, cytoskeleton remodelling, neurotransmission, neurogenesis and carbohydrate metabolism. These proteins might clarify novel molecular aspects of TSC etiopathogenesis and constitute putative molecular targets for novel therapeutic management of TSC-related disorders.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1549080
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact