Sugarcane (Saccharum officinarum L.) cultivation leaves behind around 20 t ha−1 of biomass residue after harvest and processing. We investigated the potential for sequestering carbon (C) in soil with these residues by partially converting them into biochar (recalcitrant carbon-rich material). First, we modified the RothC model to allow changes in soil C arising from additions of sugarcane-derived biochar. Second, we evaluated the modified model against published field data, and found satisfactory agreement between observed and predicted soil C accumulation. Third, we used the model to explore the potential for soil C sequestration with sugarcane biochar in São Paulo State, Brazil. The results show a potential increase in soil C stocks by 2.35 ± 0.4 t C ha−1 year−1 in sugarcane fields across the State at application rates of 4.2 t biochar ha−1 year−1. Scaling to the total sugarcane area of the State, this would be 50 Mt of CO2 equivalent year−1, which is 31% of the CO2 equivalent emissions attributed to the State in 2016. Future research should (a) further validate the model with field experiments; (b) make a full life cycle assessment of the potential for greenhouse gas mitigation, including additional effects of biochar applications on greenhouse gas balances.

Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil

Goglio P.;
2020

Abstract

Sugarcane (Saccharum officinarum L.) cultivation leaves behind around 20 t ha−1 of biomass residue after harvest and processing. We investigated the potential for sequestering carbon (C) in soil with these residues by partially converting them into biochar (recalcitrant carbon-rich material). First, we modified the RothC model to allow changes in soil C arising from additions of sugarcane-derived biochar. Second, we evaluated the modified model against published field data, and found satisfactory agreement between observed and predicted soil C accumulation. Third, we used the model to explore the potential for soil C sequestration with sugarcane biochar in São Paulo State, Brazil. The results show a potential increase in soil C stocks by 2.35 ± 0.4 t C ha−1 year−1 in sugarcane fields across the State at application rates of 4.2 t biochar ha−1 year−1. Scaling to the total sugarcane area of the State, this would be 50 Mt of CO2 equivalent year−1, which is 31% of the CO2 equivalent emissions attributed to the State in 2016. Future research should (a) further validate the model with field experiments; (b) make a full life cycle assessment of the potential for greenhouse gas mitigation, including additional effects of biochar applications on greenhouse gas balances.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1552713
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 34
social impact