In this paper a new discrete Differential Evolution algorithm for the Permutation Flowshop Scheduling Problem with the total flowtime criterion is proposed. The core of the algorithm is the distance-based differential mutation operator defined by means of a new randomized bubble sort algorithm. This mutation scheme allows the Differential Evolution to directly navigate the permutations search space. Experiments were held on a well known benchmark suite and the results show that our proposal outperforms state-of-the-art algorithms on the majority of the problems.

A differential evolution algorithm for the permutation flowshop scheduling problem with total flow time criterion

Baioletti M.;Milani A.
2014

Abstract

In this paper a new discrete Differential Evolution algorithm for the Permutation Flowshop Scheduling Problem with the total flowtime criterion is proposed. The core of the algorithm is the distance-based differential mutation operator defined by means of a new randomized bubble sort algorithm. This mutation scheme allows the Differential Evolution to directly navigate the permutations search space. Experiments were held on a well known benchmark suite and the results show that our proposal outperforms state-of-the-art algorithms on the majority of the problems.
2014
978-3-319-10761-5
978-3-319-10762-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1553765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact