Slow crack growth in a model of homogenous brittle elastic material is described as a thermal activation process where stress fluctuations allow to overcome a breaking threshold through a series of irreversible steps. We study the case of a single crack in a flat sheet for which analytical predictions can be made, and compare them with results from the equivalent problem of a 2D spring network. Good statistical agreement is obtained for the crack growth profile and final rupture time. The specific scaling of the energy barrier with stress intensity factor appears as a consequence of irreversibility. In addition, the model brings out a characteristic growth length whose physical meaning could be tested experimentally.
Thermal activation of rupture and slow crack growth in a model of homogenous brittle materials
Scorretti, Riccardo;Ciliberto, Sergio
2003
Abstract
Slow crack growth in a model of homogenous brittle elastic material is described as a thermal activation process where stress fluctuations allow to overcome a breaking threshold through a series of irreversible steps. We study the case of a single crack in a flat sheet for which analytical predictions can be made, and compare them with results from the equivalent problem of a 2D spring network. Good statistical agreement is obtained for the crack growth profile and final rupture time. The specific scaling of the energy barrier with stress intensity factor appears as a consequence of irreversibility. In addition, the model brings out a characteristic growth length whose physical meaning could be tested experimentally.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.