This paper presents the most commonly used method to characterize individual biological cells on a dielectric point of view. It is a force based technique which lays on dielectrophoresis and/or electrorotation. First the principle of these phenomena are described and analyzed with an extension to magnetic forces at the micrometric scale level. Secondly we present an experimental setup which permits to acquire the dielectrophoretic spectrum which is a dielectric signature of a cell. The main dielectric parameters can be deduced by fitting the theoretical response of the cell issued from a dielectric model and the experimental data. At the end we present an improved fitting method which takes advantage of a sensitivity analysis based on a probabilistic approach.

Electromagnetic characterization of biological cells

Riccardo Scorretti;
2009

Abstract

This paper presents the most commonly used method to characterize individual biological cells on a dielectric point of view. It is a force based technique which lays on dielectrophoresis and/or electrorotation. First the principle of these phenomena are described and analyzed with an extension to magnetic forces at the micrometric scale level. Secondly we present an experimental setup which permits to acquire the dielectrophoretic spectrum which is a dielectric signature of a cell. The main dielectric parameters can be deduced by fitting the theoretical response of the cell issued from a dielectric model and the experimental data. At the end we present an improved fitting method which takes advantage of a sensitivity analysis based on a probabilistic approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1554476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact