The effects of biochemical components and processing variables (e.g., temperatures, solid-liquid ratio, ethanol concen-tration, and time) during fast hydrothermal liquefaction of a highly CO2-tolerant microalgae (Micractinium sp.) on the product yields and biofuel quality were explored using response surface methodology coupled with central composite design. Results showed that the maximum bio-oil yield (51.4 %) was obtained at 321 degrees C for 49 min at ethanol concen-tration of 75 % and solid-liquid ratio of 15.3 %. Among different studied parameters, ethanol concentration showed the highest significant impact on the bio-oil yield due to the low P-value and high F-value in ANOVA analysis. Further-more, the chemical compositions of bio-oils were determined, which showed that the increase of ethanol concentra-ti on in the solvent not only increased the bio-oil yield but also promoted the bio-oil quality by reduction of carboxylic acids and nitrogen-containing compounds with simultaneous enhancement of esters in the bio-oil. The present results show that fast hydrothermal liquefaction is a promising approach to convert the microalgae into high quality biofuels rich in esters.

Response surface optimization of product yields and biofuel quality during fast hydrothermal liquefaction of a highly CO2-tolerant microalgae

Chen H.;Bartocci P.;Fantozzi F.;
2023

Abstract

The effects of biochemical components and processing variables (e.g., temperatures, solid-liquid ratio, ethanol concen-tration, and time) during fast hydrothermal liquefaction of a highly CO2-tolerant microalgae (Micractinium sp.) on the product yields and biofuel quality were explored using response surface methodology coupled with central composite design. Results showed that the maximum bio-oil yield (51.4 %) was obtained at 321 degrees C for 49 min at ethanol concen-tration of 75 % and solid-liquid ratio of 15.3 %. Among different studied parameters, ethanol concentration showed the highest significant impact on the bio-oil yield due to the low P-value and high F-value in ANOVA analysis. Further-more, the chemical compositions of bio-oils were determined, which showed that the increase of ethanol concentra-ti on in the solvent not only increased the bio-oil yield but also promoted the bio-oil quality by reduction of carboxylic acids and nitrogen-containing compounds with simultaneous enhancement of esters in the bio-oil. The present results show that fast hydrothermal liquefaction is a promising approach to convert the microalgae into high quality biofuels rich in esters.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1554791
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact