The presence of fillets, rounds, chamfers and grooves is typical of many real-world mechanical components. Such features introduces in the model various topological and geometrical modifications which may alter the correct understanding of its main features. Another drawback which hinders the correct engineering evaluation of a part is that its geometrical and topological representation is not unique, since it depends either on the different procedures used to generate CAD models or on the different internal representation of the geometric kernels used by CAD packages. The overall aim of this work is to define an intermediate representation scheme which incorporates information about minor features such as chamfers, fillets, rounds and grooves into a graph based representation and overcomes the problem of non-uniqueness in the geometric representation. The representation scheme discussed here takes as input a solid model in B-rep form, and provides a description of a part at an higher level of abstraction in comparison with the raw B-rep description. A procedure for secondary features recognition is also described in this paper. The proposed algorithm consists of two steps where both topological/geometrical properties and dimensional attributes are investigated in order to fulfil a correct recognition. The recognized secondary features are then inserted into the model as labels which qualify the relationships between the faces of the graph representation. The resulting modelling scheme can be conveniently used for primary feature recognition as well as for other engineering analysis/simulation purposes
An intermadiate level representation scheme for B-rep model simplification and secondary features recognition
BIANCONI, Francesco;
2003
Abstract
The presence of fillets, rounds, chamfers and grooves is typical of many real-world mechanical components. Such features introduces in the model various topological and geometrical modifications which may alter the correct understanding of its main features. Another drawback which hinders the correct engineering evaluation of a part is that its geometrical and topological representation is not unique, since it depends either on the different procedures used to generate CAD models or on the different internal representation of the geometric kernels used by CAD packages. The overall aim of this work is to define an intermediate representation scheme which incorporates information about minor features such as chamfers, fillets, rounds and grooves into a graph based representation and overcomes the problem of non-uniqueness in the geometric representation. The representation scheme discussed here takes as input a solid model in B-rep form, and provides a description of a part at an higher level of abstraction in comparison with the raw B-rep description. A procedure for secondary features recognition is also described in this paper. The proposed algorithm consists of two steps where both topological/geometrical properties and dimensional attributes are investigated in order to fulfil a correct recognition. The recognized secondary features are then inserted into the model as labels which qualify the relationships between the faces of the graph representation. The resulting modelling scheme can be conveniently used for primary feature recognition as well as for other engineering analysis/simulation purposesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.