The widespread availability of wind turbine operation data has considerably boosted the research and the applications for wind turbine monitoring. It is well established that a systematic misalignment of the wind turbine nacelle with respect to the wind direction has a remarkable impact in terms of down-performance, because the extracted power is in first approximation proportional to the cosine cube of the yaw angle. Nevertheless, due to the fact that in the wind farm practice the wind field facing the rotor is estimated through anemometers placed behind the rotor, it is challenging to robustly detect systematic yaw errors without the use of additional upwind sensory systems. Nevertheless, this objective is valuable because it involves the use of data that are available to wind farm practitioners at zero cost. On these grounds, the present work is a two-steps test case discussion. At first, a new method for systematic yaw error detection through operation data analysis is presented and is applied for individuating a misaligned multi-MW wind turbine. After the yaw error correction on the test case wind turbine, operation data of the whole wind farm are employed for an innovative assessment method of the performance improvement at the target wind turbine. The other wind turbines in the farm are employed as references and their operation data are used as input for a multivariate Kernel regression whose target is the power of the wind turbine of interest. Training the model with pre-correction data and validating on post-correction data, it is estimated that a systematic yaw error of 4◦ affects the performance up to the order of the 1.5% of the Annual Energy Production.

Wind turbine systematic yaw error: Operation data analysis techniques for detecting IT and assessing its performance impact

Astolfi D.;Castellani F.;Becchetti M.;
2020

Abstract

The widespread availability of wind turbine operation data has considerably boosted the research and the applications for wind turbine monitoring. It is well established that a systematic misalignment of the wind turbine nacelle with respect to the wind direction has a remarkable impact in terms of down-performance, because the extracted power is in first approximation proportional to the cosine cube of the yaw angle. Nevertheless, due to the fact that in the wind farm practice the wind field facing the rotor is estimated through anemometers placed behind the rotor, it is challenging to robustly detect systematic yaw errors without the use of additional upwind sensory systems. Nevertheless, this objective is valuable because it involves the use of data that are available to wind farm practitioners at zero cost. On these grounds, the present work is a two-steps test case discussion. At first, a new method for systematic yaw error detection through operation data analysis is presented and is applied for individuating a misaligned multi-MW wind turbine. After the yaw error correction on the test case wind turbine, operation data of the whole wind farm are employed for an innovative assessment method of the performance improvement at the target wind turbine. The other wind turbines in the farm are employed as references and their operation data are used as input for a multivariate Kernel regression whose target is the power of the wind turbine of interest. Training the model with pre-correction data and validating on post-correction data, it is estimated that a systematic yaw error of 4◦ affects the performance up to the order of the 1.5% of the Annual Energy Production.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1556147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact