It is proven a generalization of a result of M. Hall of 1974: in the cyclic model of PG(n,q), the additive inverse of a line is a (q+1)-arc if n+1 is a prime and q+1>n. It is also shown that the additive inverse of a line is always a normal rational curve in some subspace.

The cyclic model for PG (n, q) and a construction of arcs

FAINA, Giorgio;MARCUGINI, Stefano;PAMBIANCO, Fernanda
2002

Abstract

It is proven a generalization of a result of M. Hall of 1974: in the cyclic model of PG(n,q), the additive inverse of a line is a (q+1)-arc if n+1 is a prime and q+1>n. It is also shown that the additive inverse of a line is always a normal rational curve in some subspace.
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/155747
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact